W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth
We prove a local W 1 , p ( · ) -regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents p ( x ) > 1 satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular doubl...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2022, Vol.19 (6) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a local
W
1
,
p
(
·
)
-regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents
p
(
x
)
>
1
satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular double phase elliptic problems with Orlicz growth, which means that the nonlinearity is getting close to the regular problems when the gradient of its solution goes to infinity. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-022-02176-2 |