W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth

We prove a local W 1 , p ( · ) -regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents p ( x ) > 1 satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular doubl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2022, Vol.19 (6)
Hauptverfasser: Liang, Shuang, Gao, Hongya, Zheng, Shenzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a local W 1 , p ( · ) -regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents p ( x ) > 1 satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular double phase elliptic problems with Orlicz growth, which means that the nonlinearity is getting close to the regular problems when the gradient of its solution goes to infinity.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-022-02176-2