Closed 1/2-Elasticae in the 2-Sphere
We study critical trajectories in the sphere for the 1/2-Bernoulli’s bending functional with length constraint. For every Lagrange multiplier encoding the conservation of the length during the variation, we show the existence of infinitely many closed trajectories which depend on a pair of relativel...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear science 2023-02, Vol.33 (1), Article 3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study critical trajectories in the sphere for the 1/2-Bernoulli’s bending functional with length constraint. For every Lagrange multiplier encoding the conservation of the length during the variation, we show the existence of infinitely many closed trajectories which depend on a pair of relatively prime natural numbers. A geometric description of these numbers and the relation with the shape of the corresponding critical trajectories is also given. |
---|---|
ISSN: | 0938-8974 1432-1467 |
DOI: | 10.1007/s00332-022-09860-3 |