Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals

Let r > 4 3 and let Ω ∈ L r ( S 2 n - 1 ) have vanishing integral. We show that the bilinear rough singular integral T Ω ( f , g ) ( x ) = p.v. ∫ R n ∫ R n Ω ( ( y , z ) / | ( y , z ) | ) | ( y , z ) | 2 n f ( x - y ) g ( x - z ) d y d z , satisfies a sparse bound by ( p ,  p ,  p )-averages, whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2022-12, Vol.28 (6), Article 80
Hauptverfasser: Grafakos, Loukas, Wang, Zhidan, Xue, Qingying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title The Journal of fourier analysis and applications
container_volume 28
creator Grafakos, Loukas
Wang, Zhidan
Xue, Qingying
description Let r > 4 3 and let Ω ∈ L r ( S 2 n - 1 ) have vanishing integral. We show that the bilinear rough singular integral T Ω ( f , g ) ( x ) = p.v. ∫ R n ∫ R n Ω ( ( y , z ) / | ( y , z ) | ) | ( y , z ) | 2 n f ( x - y ) g ( x - z ) d y d z , satisfies a sparse bound by ( p ,  p ,  p )-averages, where p is bigger than a certain number explicitly related to r and n . As a consequence we deduce certain quantitative weighted estimates for bilinear homogeneous singular integrals associated with rough homogeneous kernels.
doi_str_mv 10.1007/s00041-022-09973-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2726040433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723206811</galeid><sourcerecordid>A723206811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1ea4739229e02354932c461644169a1d9aea01e05089afd3be9892c6c7ce39d43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsFb_gKsB11NvHvPIstaqhaJgFZchZu5MU9qkJjML--uNjuBOsjiHcL7cm5MklwQmBKC8DgDASQaUZiBEybLDUTIiOSNZXuXkOHooRPSFOE3OQtgAUMJKNkoeV3vlA6a3bmes6oyzqbJ1-oamXXdYp_PQmZ3qMKSN8-mz69t1emO2xqLy6crYtt9Gs7Adtl5tw3ly0kTBi18dJ69385fZQ7Z8ul_MpstM06rqMoKKl0xQKhAoy7lgVPOCFJyTQihSC4UKCEIOlVBNzd5RVILqQpcamag5GydXw7t77z56DJ3cuN7bOFLSkhbAgTMWU5Mh1aotSmMb13ml46lxZ7Sz2Jh4Py0po1BUhESADoD2LgSPjdz7-H3_KQnI76LlULSMRcufouUhQmyAQgzbFv3fLv9QXyZkf9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726040433</pqid></control><display><type>article</type><title>Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals</title><source>SpringerNature Journals</source><creator>Grafakos, Loukas ; Wang, Zhidan ; Xue, Qingying</creator><creatorcontrib>Grafakos, Loukas ; Wang, Zhidan ; Xue, Qingying</creatorcontrib><description>Let r &gt; 4 3 and let Ω ∈ L r ( S 2 n - 1 ) have vanishing integral. We show that the bilinear rough singular integral T Ω ( f , g ) ( x ) = p.v. ∫ R n ∫ R n Ω ( ( y , z ) / | ( y , z ) | ) | ( y , z ) | 2 n f ( x - y ) g ( x - z ) d y d z , satisfies a sparse bound by ( p ,  p ,  p )-averages, where p is bigger than a certain number explicitly related to r and n . As a consequence we deduce certain quantitative weighted estimates for bilinear homogeneous singular integrals associated with rough homogeneous kernels.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-022-09973-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Estimates ; Fourier Analysis ; Integrals ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2022-12, Vol.28 (6), Article 80</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-1ea4739229e02354932c461644169a1d9aea01e05089afd3be9892c6c7ce39d43</citedby><cites>FETCH-LOGICAL-c288t-1ea4739229e02354932c461644169a1d9aea01e05089afd3be9892c6c7ce39d43</cites><orcidid>0000-0002-1646-9925 ; 0000-0001-7094-9201 ; 0000-0001-8327-5066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-022-09973-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-022-09973-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Grafakos, Loukas</creatorcontrib><creatorcontrib>Wang, Zhidan</creatorcontrib><creatorcontrib>Xue, Qingying</creatorcontrib><title>Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>Let r &gt; 4 3 and let Ω ∈ L r ( S 2 n - 1 ) have vanishing integral. We show that the bilinear rough singular integral T Ω ( f , g ) ( x ) = p.v. ∫ R n ∫ R n Ω ( ( y , z ) / | ( y , z ) | ) | ( y , z ) | 2 n f ( x - y ) g ( x - z ) d y d z , satisfies a sparse bound by ( p ,  p ,  p )-averages, where p is bigger than a certain number explicitly related to r and n . As a consequence we deduce certain quantitative weighted estimates for bilinear homogeneous singular integrals associated with rough homogeneous kernels.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Estimates</subject><subject>Fourier Analysis</subject><subject>Integrals</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRsFb_gKsB11NvHvPIstaqhaJgFZchZu5MU9qkJjML--uNjuBOsjiHcL7cm5MklwQmBKC8DgDASQaUZiBEybLDUTIiOSNZXuXkOHooRPSFOE3OQtgAUMJKNkoeV3vlA6a3bmes6oyzqbJ1-oamXXdYp_PQmZ3qMKSN8-mz69t1emO2xqLy6crYtt9Gs7Adtl5tw3ly0kTBi18dJ69385fZQ7Z8ul_MpstM06rqMoKKl0xQKhAoy7lgVPOCFJyTQihSC4UKCEIOlVBNzd5RVILqQpcamag5GydXw7t77z56DJ3cuN7bOFLSkhbAgTMWU5Mh1aotSmMb13ml46lxZ7Sz2Jh4Py0po1BUhESADoD2LgSPjdz7-H3_KQnI76LlULSMRcufouUhQmyAQgzbFv3fLv9QXyZkf9Q</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Grafakos, Loukas</creator><creator>Wang, Zhidan</creator><creator>Xue, Qingying</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1646-9925</orcidid><orcidid>https://orcid.org/0000-0001-7094-9201</orcidid><orcidid>https://orcid.org/0000-0001-8327-5066</orcidid></search><sort><creationdate>20221201</creationdate><title>Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals</title><author>Grafakos, Loukas ; Wang, Zhidan ; Xue, Qingying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1ea4739229e02354932c461644169a1d9aea01e05089afd3be9892c6c7ce39d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Estimates</topic><topic>Fourier Analysis</topic><topic>Integrals</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grafakos, Loukas</creatorcontrib><creatorcontrib>Wang, Zhidan</creatorcontrib><creatorcontrib>Xue, Qingying</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grafakos, Loukas</au><au>Wang, Zhidan</au><au>Xue, Qingying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>28</volume><issue>6</issue><artnum>80</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>Let r &gt; 4 3 and let Ω ∈ L r ( S 2 n - 1 ) have vanishing integral. We show that the bilinear rough singular integral T Ω ( f , g ) ( x ) = p.v. ∫ R n ∫ R n Ω ( ( y , z ) / | ( y , z ) | ) | ( y , z ) | 2 n f ( x - y ) g ( x - z ) d y d z , satisfies a sparse bound by ( p ,  p ,  p )-averages, where p is bigger than a certain number explicitly related to r and n . As a consequence we deduce certain quantitative weighted estimates for bilinear homogeneous singular integrals associated with rough homogeneous kernels.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-022-09973-z</doi><orcidid>https://orcid.org/0000-0002-1646-9925</orcidid><orcidid>https://orcid.org/0000-0001-7094-9201</orcidid><orcidid>https://orcid.org/0000-0001-8327-5066</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2022-12, Vol.28 (6), Article 80
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_2726040433
source SpringerNature Journals
subjects Abstract Harmonic Analysis
Approximations and Expansions
Estimates
Fourier Analysis
Integrals
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Signal,Image and Speech Processing
title Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Domination%20and%20Weighted%20Estimates%20for%20Rough%20Bilinear%20Singular%20Integrals&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Grafakos,%20Loukas&rft.date=2022-12-01&rft.volume=28&rft.issue=6&rft.artnum=80&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-022-09973-z&rft_dat=%3Cgale_proqu%3EA723206811%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726040433&rft_id=info:pmid/&rft_galeid=A723206811&rfr_iscdi=true