Sparse Domination and Weighted Estimates for Rough Bilinear Singular Integrals
Let r > 4 3 and let Ω ∈ L r ( S 2 n - 1 ) have vanishing integral. We show that the bilinear rough singular integral T Ω ( f , g ) ( x ) = p.v. ∫ R n ∫ R n Ω ( ( y , z ) / | ( y , z ) | ) | ( y , z ) | 2 n f ( x - y ) g ( x - z ) d y d z , satisfies a sparse bound by ( p , p , p )-averages, whe...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2022-12, Vol.28 (6), Article 80 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
r
>
4
3
and let
Ω
∈
L
r
(
S
2
n
-
1
)
have vanishing integral. We show that the bilinear rough singular integral
T
Ω
(
f
,
g
)
(
x
)
=
p.v.
∫
R
n
∫
R
n
Ω
(
(
y
,
z
)
/
|
(
y
,
z
)
|
)
|
(
y
,
z
)
|
2
n
f
(
x
-
y
)
g
(
x
-
z
)
d
y
d
z
,
satisfies a sparse bound by (
p
,
p
,
p
)-averages, where
p
is bigger than a certain number explicitly related to
r
and
n
. As a consequence we deduce certain quantitative weighted estimates for bilinear homogeneous singular integrals associated with rough homogeneous kernels. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-022-09973-z |