Strain Effects in Wurtzite Boron Nitride: Elastic Constants, Internal Strain, and Deformation Potentials from Hybrid Functional Density Functional Theory
Boron‐containing III‐nitride heterostructures have recently attracted significant attention for improving the efficiency of visible and UV light emitters. However, the fundamental material properties of wurtzite (WZ) boron nitride (BN) are largely unexplored. Here, highly accurate first‐principles c...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. PSS-RRL. Rapid research letters 2022-06, Vol.16 (6), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Boron‐containing III‐nitride heterostructures have recently attracted significant attention for improving the efficiency of visible and UV light emitters. However, the fundamental material properties of wurtzite (WZ) boron nitride (BN) are largely unexplored. Here, highly accurate first‐principles calculations are used to gain insight into internal strain, elastic constants, and electronic band structure deformation potentials. These parameters are key ingredients for simulating, and thus predicting, electronic and optical properties of boron‐containing III‐nitride‐based light emitters. The ab initio calculations show, for instance, that the quasi‐cubic approximation for deformation potentials is a poor approximation for WZ BN.
The deformation potentials, elastic constants, and internal strain parameters of wurtzite (WZ) boron nitride (BN) are determined using hybrid density functional theory. WZ BN is a promising material for optimizing the efficiency of III‐nitride‐based devices, and these parameters are essential inputs for modeling such systems. The results also show, e.g., that the quasi‐cubic approximation is very inaccurate for WZ BN. |
---|---|
ISSN: | 1862-6254 1862-6270 |
DOI: | 10.1002/pssr.202200021 |