Uniform perfectness of the Berkovich Julia sets in non-archimedean dynamics
We show that a rational function f of degree $>1$ on the projective line over an algebraically closed field that is complete with respect to a non-trivial and non-archimedean absolute value has no potentially good reductions if and only if the Berkovich Julia set of f is uniformly perfect. As an...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2022-11, Vol.173 (3), p.573-590 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that a rational function f of degree
$>1$
on the projective line over an algebraically closed field that is complete with respect to a non-trivial and non-archimedean absolute value has no potentially good reductions if and only if the Berkovich Julia set of f is uniformly perfect. As an application, a uniform regularity of the boundary of each Berkovich Fatou component of f is also established. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004121000669 |