Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics

Conductive textiles are promising components for next-generation wearable electronics. However, it is still a challenge for current conductive textiles and wearable electronic devices to survive in harsh environments, such as extreme mechanical damages and low/high-temperature stresses. Herein, we r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21379-21389
Hauptverfasser: Lu, Xi, Ye, Yusheng, Shang, Wenhui, Huang, Simin, Wang, Haifei, Gan, Tiansheng, Chen, Guokang, Deng, Libo, Wu, Qixing, Zhou, Xuechang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21389
container_issue 4
container_start_page 21379
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 1
creator Lu, Xi
Ye, Yusheng
Shang, Wenhui
Huang, Simin
Wang, Haifei
Gan, Tiansheng
Chen, Guokang
Deng, Libo
Wu, Qixing
Zhou, Xuechang
description Conductive textiles are promising components for next-generation wearable electronics. However, it is still a challenge for current conductive textiles and wearable electronic devices to survive in harsh environments, such as extreme mechanical damages and low/high-temperature stresses. Herein, we report ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKFs) fabricated via polymer-assisted electroless deposition (ELD) and electrodeposition (ED) techniques. The combination of ELD and ED techniques effectively metallizes the Kevlar fabrics, enabling ultrahigh conductivity (sheet resistance
doi_str_mv 10.1039/d2ta05702f
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2725828345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725828345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-57c99813e4db4125922f8811dbee5d953e426a56746d1df74a439b701fe8b58c3</originalsourceid><addsrcrecordid>eNpFkMFKAzEQQIMoWGov3oWAN-lqkt3sJseiVsWCl_a8ZJNJm5Lu1iRV6te7WqlzmWHmzQw8hC4puaUkl3eGJUV4RZg9QQNGOMmqQpanx1qIczSKcU36EISUUg4QLHwKKqbQtcsxtl5tIAuQVDCqTWPs2hRcG51W3u_xJ3ijGg9jrFqDV2656pu6a81OJ_cBeNMveu--wOBX-PAqYKua4HS8QGdW-QijvzxEi-nj_P45m709vdxPZplmgqaMV1pKQXMoTFNQxiVjVghKTQPAjeT9gJWKl1VRGmpsVagil01FqAXRcKHzIbo-3N2G7n0HMdXrbhfa_mXNKsYFE3nBe-rmQOnQxRjA1tvgNirsa0rqH5P1A5tPfk1Oe_jqAIeoj9y_6fwbjlBwbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725828345</pqid></control><display><type>article</type><title>Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lu, Xi ; Ye, Yusheng ; Shang, Wenhui ; Huang, Simin ; Wang, Haifei ; Gan, Tiansheng ; Chen, Guokang ; Deng, Libo ; Wu, Qixing ; Zhou, Xuechang</creator><creatorcontrib>Lu, Xi ; Ye, Yusheng ; Shang, Wenhui ; Huang, Simin ; Wang, Haifei ; Gan, Tiansheng ; Chen, Guokang ; Deng, Libo ; Wu, Qixing ; Zhou, Xuechang</creatorcontrib><description>Conductive textiles are promising components for next-generation wearable electronics. However, it is still a challenge for current conductive textiles and wearable electronic devices to survive in harsh environments, such as extreme mechanical damages and low/high-temperature stresses. Herein, we report ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKFs) fabricated via polymer-assisted electroless deposition (ELD) and electrodeposition (ED) techniques. The combination of ELD and ED techniques effectively metallizes the Kevlar fabrics, enabling ultrahigh conductivity (sheet resistance &lt;0.007 Ω sq −1 ). More importantly, the deposited metal layers significantly enhance the anti-impact properties of Kevlar fabrics by 2-3 times. Due to the inherent properties of Kevlar and effective metal coatings, the MKFs maintain conductivity while suffering various mechanical damages (GPa-scale tensile strength, cutting, sticking, etc. ), high temperatures (∼300 °C), and even flame stresses. Surprisingly, the MKFs show intrinsic weldability with traditional solder materials. The multifunctional applications of such high-performance metallized fabrics are demonstrated as textile-based conductors, heaters, and supercapacitors, all of which could survive in extremely harsh conditions. Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKF) were fabricated via polymer-assisted electroless deposition and electrodeposition techniques.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta05702f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aramid fibers ; Conductivity ; Conductors ; Electrodeposition ; Electroless deposition ; Electroless plating ; Electronic devices ; Electronic equipment ; Fabrics ; Fire damage ; Flame retardants ; Harsh environments ; Heat resistance ; High temperature ; Kevlar (trademark) ; Metal coatings ; Metallizing ; Polymers ; Stresses ; Tensile strength ; Textile composites ; Textiles ; Wearable technology</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21379-21389</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-57c99813e4db4125922f8811dbee5d953e426a56746d1df74a439b701fe8b58c3</citedby><cites>FETCH-LOGICAL-c281t-57c99813e4db4125922f8811dbee5d953e426a56746d1df74a439b701fe8b58c3</cites><orcidid>0000-0001-9388-157X ; 0000-0002-1558-9423 ; 0000-0002-0921-8925 ; 0000-0001-7141-0419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Ye, Yusheng</creatorcontrib><creatorcontrib>Shang, Wenhui</creatorcontrib><creatorcontrib>Huang, Simin</creatorcontrib><creatorcontrib>Wang, Haifei</creatorcontrib><creatorcontrib>Gan, Tiansheng</creatorcontrib><creatorcontrib>Chen, Guokang</creatorcontrib><creatorcontrib>Deng, Libo</creatorcontrib><creatorcontrib>Wu, Qixing</creatorcontrib><creatorcontrib>Zhou, Xuechang</creatorcontrib><title>Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Conductive textiles are promising components for next-generation wearable electronics. However, it is still a challenge for current conductive textiles and wearable electronic devices to survive in harsh environments, such as extreme mechanical damages and low/high-temperature stresses. Herein, we report ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKFs) fabricated via polymer-assisted electroless deposition (ELD) and electrodeposition (ED) techniques. The combination of ELD and ED techniques effectively metallizes the Kevlar fabrics, enabling ultrahigh conductivity (sheet resistance &lt;0.007 Ω sq −1 ). More importantly, the deposited metal layers significantly enhance the anti-impact properties of Kevlar fabrics by 2-3 times. Due to the inherent properties of Kevlar and effective metal coatings, the MKFs maintain conductivity while suffering various mechanical damages (GPa-scale tensile strength, cutting, sticking, etc. ), high temperatures (∼300 °C), and even flame stresses. Surprisingly, the MKFs show intrinsic weldability with traditional solder materials. The multifunctional applications of such high-performance metallized fabrics are demonstrated as textile-based conductors, heaters, and supercapacitors, all of which could survive in extremely harsh conditions. Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKF) were fabricated via polymer-assisted electroless deposition and electrodeposition techniques.</description><subject>Aramid fibers</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Electrodeposition</subject><subject>Electroless deposition</subject><subject>Electroless plating</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Fabrics</subject><subject>Fire damage</subject><subject>Flame retardants</subject><subject>Harsh environments</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Kevlar (trademark)</subject><subject>Metal coatings</subject><subject>Metallizing</subject><subject>Polymers</subject><subject>Stresses</subject><subject>Tensile strength</subject><subject>Textile composites</subject><subject>Textiles</subject><subject>Wearable technology</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKAzEQQIMoWGov3oWAN-lqkt3sJseiVsWCl_a8ZJNJm5Lu1iRV6te7WqlzmWHmzQw8hC4puaUkl3eGJUV4RZg9QQNGOMmqQpanx1qIczSKcU36EISUUg4QLHwKKqbQtcsxtl5tIAuQVDCqTWPs2hRcG51W3u_xJ3ijGg9jrFqDV2656pu6a81OJ_cBeNMveu--wOBX-PAqYKua4HS8QGdW-QijvzxEi-nj_P45m709vdxPZplmgqaMV1pKQXMoTFNQxiVjVghKTQPAjeT9gJWKl1VRGmpsVagil01FqAXRcKHzIbo-3N2G7n0HMdXrbhfa_mXNKsYFE3nBe-rmQOnQxRjA1tvgNirsa0rqH5P1A5tPfk1Oe_jqAIeoj9y_6fwbjlBwbA</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Lu, Xi</creator><creator>Ye, Yusheng</creator><creator>Shang, Wenhui</creator><creator>Huang, Simin</creator><creator>Wang, Haifei</creator><creator>Gan, Tiansheng</creator><creator>Chen, Guokang</creator><creator>Deng, Libo</creator><creator>Wu, Qixing</creator><creator>Zhou, Xuechang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9388-157X</orcidid><orcidid>https://orcid.org/0000-0002-1558-9423</orcidid><orcidid>https://orcid.org/0000-0002-0921-8925</orcidid><orcidid>https://orcid.org/0000-0001-7141-0419</orcidid></search><sort><creationdate>20221018</creationdate><title>Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics</title><author>Lu, Xi ; Ye, Yusheng ; Shang, Wenhui ; Huang, Simin ; Wang, Haifei ; Gan, Tiansheng ; Chen, Guokang ; Deng, Libo ; Wu, Qixing ; Zhou, Xuechang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-57c99813e4db4125922f8811dbee5d953e426a56746d1df74a439b701fe8b58c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aramid fibers</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Electrodeposition</topic><topic>Electroless deposition</topic><topic>Electroless plating</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Fabrics</topic><topic>Fire damage</topic><topic>Flame retardants</topic><topic>Harsh environments</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Kevlar (trademark)</topic><topic>Metal coatings</topic><topic>Metallizing</topic><topic>Polymers</topic><topic>Stresses</topic><topic>Tensile strength</topic><topic>Textile composites</topic><topic>Textiles</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Ye, Yusheng</creatorcontrib><creatorcontrib>Shang, Wenhui</creatorcontrib><creatorcontrib>Huang, Simin</creatorcontrib><creatorcontrib>Wang, Haifei</creatorcontrib><creatorcontrib>Gan, Tiansheng</creatorcontrib><creatorcontrib>Chen, Guokang</creatorcontrib><creatorcontrib>Deng, Libo</creatorcontrib><creatorcontrib>Wu, Qixing</creatorcontrib><creatorcontrib>Zhou, Xuechang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xi</au><au>Ye, Yusheng</au><au>Shang, Wenhui</au><au>Huang, Simin</au><au>Wang, Haifei</au><au>Gan, Tiansheng</au><au>Chen, Guokang</au><au>Deng, Libo</au><au>Wu, Qixing</au><au>Zhou, Xuechang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-10-18</date><risdate>2022</risdate><volume>1</volume><issue>4</issue><spage>21379</spage><epage>21389</epage><pages>21379-21389</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Conductive textiles are promising components for next-generation wearable electronics. However, it is still a challenge for current conductive textiles and wearable electronic devices to survive in harsh environments, such as extreme mechanical damages and low/high-temperature stresses. Herein, we report ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKFs) fabricated via polymer-assisted electroless deposition (ELD) and electrodeposition (ED) techniques. The combination of ELD and ED techniques effectively metallizes the Kevlar fabrics, enabling ultrahigh conductivity (sheet resistance &lt;0.007 Ω sq −1 ). More importantly, the deposited metal layers significantly enhance the anti-impact properties of Kevlar fabrics by 2-3 times. Due to the inherent properties of Kevlar and effective metal coatings, the MKFs maintain conductivity while suffering various mechanical damages (GPa-scale tensile strength, cutting, sticking, etc. ), high temperatures (∼300 °C), and even flame stresses. Surprisingly, the MKFs show intrinsic weldability with traditional solder materials. The multifunctional applications of such high-performance metallized fabrics are demonstrated as textile-based conductors, heaters, and supercapacitors, all of which could survive in extremely harsh conditions. Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKF) were fabricated via polymer-assisted electroless deposition and electrodeposition techniques.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta05702f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9388-157X</orcidid><orcidid>https://orcid.org/0000-0002-1558-9423</orcidid><orcidid>https://orcid.org/0000-0002-0921-8925</orcidid><orcidid>https://orcid.org/0000-0001-7141-0419</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21379-21389
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2725828345
source Royal Society Of Chemistry Journals 2008-
subjects Aramid fibers
Conductivity
Conductors
Electrodeposition
Electroless deposition
Electroless plating
Electronic devices
Electronic equipment
Fabrics
Fire damage
Flame retardants
Harsh environments
Heat resistance
High temperature
Kevlar (trademark)
Metal coatings
Metallizing
Polymers
Stresses
Tensile strength
Textile composites
Textiles
Wearable technology
title Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrastrong,%20flame-retardant,%20intrinsically%20weldable,%20and%20highly%20conductive%20metallized%20Kevlar%20fabrics&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Lu,%20Xi&rft.date=2022-10-18&rft.volume=1&rft.issue=4&rft.spage=21379&rft.epage=21389&rft.pages=21379-21389&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta05702f&rft_dat=%3Cproquest_rsc_p%3E2725828345%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725828345&rft_id=info:pmid/&rfr_iscdi=true