Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics
Conductive textiles are promising components for next-generation wearable electronics. However, it is still a challenge for current conductive textiles and wearable electronic devices to survive in harsh environments, such as extreme mechanical damages and low/high-temperature stresses. Herein, we r...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21379-21389 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21389 |
---|---|
container_issue | 4 |
container_start_page | 21379 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 1 |
creator | Lu, Xi Ye, Yusheng Shang, Wenhui Huang, Simin Wang, Haifei Gan, Tiansheng Chen, Guokang Deng, Libo Wu, Qixing Zhou, Xuechang |
description | Conductive textiles are promising components for next-generation wearable electronics. However, it is still a challenge for current conductive textiles and wearable electronic devices to survive in harsh environments, such as extreme mechanical damages and low/high-temperature stresses. Herein, we report ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKFs) fabricated
via
polymer-assisted electroless deposition (ELD) and electrodeposition (ED) techniques. The combination of ELD and ED techniques effectively metallizes the Kevlar fabrics, enabling ultrahigh conductivity (sheet resistance |
doi_str_mv | 10.1039/d2ta05702f |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2725828345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725828345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-57c99813e4db4125922f8811dbee5d953e426a56746d1df74a439b701fe8b58c3</originalsourceid><addsrcrecordid>eNpFkMFKAzEQQIMoWGov3oWAN-lqkt3sJseiVsWCl_a8ZJNJm5Lu1iRV6te7WqlzmWHmzQw8hC4puaUkl3eGJUV4RZg9QQNGOMmqQpanx1qIczSKcU36EISUUg4QLHwKKqbQtcsxtl5tIAuQVDCqTWPs2hRcG51W3u_xJ3ijGg9jrFqDV2656pu6a81OJ_cBeNMveu--wOBX-PAqYKua4HS8QGdW-QijvzxEi-nj_P45m709vdxPZplmgqaMV1pKQXMoTFNQxiVjVghKTQPAjeT9gJWKl1VRGmpsVagil01FqAXRcKHzIbo-3N2G7n0HMdXrbhfa_mXNKsYFE3nBe-rmQOnQxRjA1tvgNirsa0rqH5P1A5tPfk1Oe_jqAIeoj9y_6fwbjlBwbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725828345</pqid></control><display><type>article</type><title>Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lu, Xi ; Ye, Yusheng ; Shang, Wenhui ; Huang, Simin ; Wang, Haifei ; Gan, Tiansheng ; Chen, Guokang ; Deng, Libo ; Wu, Qixing ; Zhou, Xuechang</creator><creatorcontrib>Lu, Xi ; Ye, Yusheng ; Shang, Wenhui ; Huang, Simin ; Wang, Haifei ; Gan, Tiansheng ; Chen, Guokang ; Deng, Libo ; Wu, Qixing ; Zhou, Xuechang</creatorcontrib><description>Conductive textiles are promising components for next-generation wearable electronics. However, it is still a challenge for current conductive textiles and wearable electronic devices to survive in harsh environments, such as extreme mechanical damages and low/high-temperature stresses. Herein, we report ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKFs) fabricated
via
polymer-assisted electroless deposition (ELD) and electrodeposition (ED) techniques. The combination of ELD and ED techniques effectively metallizes the Kevlar fabrics, enabling ultrahigh conductivity (sheet resistance <0.007 Ω sq
−1
). More importantly, the deposited metal layers significantly enhance the anti-impact properties of Kevlar fabrics by 2-3 times. Due to the inherent properties of Kevlar and effective metal coatings, the MKFs maintain conductivity while suffering various mechanical damages (GPa-scale tensile strength, cutting, sticking,
etc.
), high temperatures (∼300 °C), and even flame stresses. Surprisingly, the MKFs show intrinsic weldability with traditional solder materials. The multifunctional applications of such high-performance metallized fabrics are demonstrated as textile-based conductors, heaters, and supercapacitors, all of which could survive in extremely harsh conditions.
Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKF) were fabricated
via
polymer-assisted electroless deposition and electrodeposition techniques.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta05702f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aramid fibers ; Conductivity ; Conductors ; Electrodeposition ; Electroless deposition ; Electroless plating ; Electronic devices ; Electronic equipment ; Fabrics ; Fire damage ; Flame retardants ; Harsh environments ; Heat resistance ; High temperature ; Kevlar (trademark) ; Metal coatings ; Metallizing ; Polymers ; Stresses ; Tensile strength ; Textile composites ; Textiles ; Wearable technology</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21379-21389</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-57c99813e4db4125922f8811dbee5d953e426a56746d1df74a439b701fe8b58c3</citedby><cites>FETCH-LOGICAL-c281t-57c99813e4db4125922f8811dbee5d953e426a56746d1df74a439b701fe8b58c3</cites><orcidid>0000-0001-9388-157X ; 0000-0002-1558-9423 ; 0000-0002-0921-8925 ; 0000-0001-7141-0419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Ye, Yusheng</creatorcontrib><creatorcontrib>Shang, Wenhui</creatorcontrib><creatorcontrib>Huang, Simin</creatorcontrib><creatorcontrib>Wang, Haifei</creatorcontrib><creatorcontrib>Gan, Tiansheng</creatorcontrib><creatorcontrib>Chen, Guokang</creatorcontrib><creatorcontrib>Deng, Libo</creatorcontrib><creatorcontrib>Wu, Qixing</creatorcontrib><creatorcontrib>Zhou, Xuechang</creatorcontrib><title>Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Conductive textiles are promising components for next-generation wearable electronics. However, it is still a challenge for current conductive textiles and wearable electronic devices to survive in harsh environments, such as extreme mechanical damages and low/high-temperature stresses. Herein, we report ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKFs) fabricated
via
polymer-assisted electroless deposition (ELD) and electrodeposition (ED) techniques. The combination of ELD and ED techniques effectively metallizes the Kevlar fabrics, enabling ultrahigh conductivity (sheet resistance <0.007 Ω sq
−1
). More importantly, the deposited metal layers significantly enhance the anti-impact properties of Kevlar fabrics by 2-3 times. Due to the inherent properties of Kevlar and effective metal coatings, the MKFs maintain conductivity while suffering various mechanical damages (GPa-scale tensile strength, cutting, sticking,
etc.
), high temperatures (∼300 °C), and even flame stresses. Surprisingly, the MKFs show intrinsic weldability with traditional solder materials. The multifunctional applications of such high-performance metallized fabrics are demonstrated as textile-based conductors, heaters, and supercapacitors, all of which could survive in extremely harsh conditions.
Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKF) were fabricated
via
polymer-assisted electroless deposition and electrodeposition techniques.</description><subject>Aramid fibers</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Electrodeposition</subject><subject>Electroless deposition</subject><subject>Electroless plating</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Fabrics</subject><subject>Fire damage</subject><subject>Flame retardants</subject><subject>Harsh environments</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Kevlar (trademark)</subject><subject>Metal coatings</subject><subject>Metallizing</subject><subject>Polymers</subject><subject>Stresses</subject><subject>Tensile strength</subject><subject>Textile composites</subject><subject>Textiles</subject><subject>Wearable technology</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKAzEQQIMoWGov3oWAN-lqkt3sJseiVsWCl_a8ZJNJm5Lu1iRV6te7WqlzmWHmzQw8hC4puaUkl3eGJUV4RZg9QQNGOMmqQpanx1qIczSKcU36EISUUg4QLHwKKqbQtcsxtl5tIAuQVDCqTWPs2hRcG51W3u_xJ3ijGg9jrFqDV2656pu6a81OJ_cBeNMveu--wOBX-PAqYKua4HS8QGdW-QijvzxEi-nj_P45m709vdxPZplmgqaMV1pKQXMoTFNQxiVjVghKTQPAjeT9gJWKl1VRGmpsVagil01FqAXRcKHzIbo-3N2G7n0HMdXrbhfa_mXNKsYFE3nBe-rmQOnQxRjA1tvgNirsa0rqH5P1A5tPfk1Oe_jqAIeoj9y_6fwbjlBwbA</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Lu, Xi</creator><creator>Ye, Yusheng</creator><creator>Shang, Wenhui</creator><creator>Huang, Simin</creator><creator>Wang, Haifei</creator><creator>Gan, Tiansheng</creator><creator>Chen, Guokang</creator><creator>Deng, Libo</creator><creator>Wu, Qixing</creator><creator>Zhou, Xuechang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9388-157X</orcidid><orcidid>https://orcid.org/0000-0002-1558-9423</orcidid><orcidid>https://orcid.org/0000-0002-0921-8925</orcidid><orcidid>https://orcid.org/0000-0001-7141-0419</orcidid></search><sort><creationdate>20221018</creationdate><title>Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics</title><author>Lu, Xi ; Ye, Yusheng ; Shang, Wenhui ; Huang, Simin ; Wang, Haifei ; Gan, Tiansheng ; Chen, Guokang ; Deng, Libo ; Wu, Qixing ; Zhou, Xuechang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-57c99813e4db4125922f8811dbee5d953e426a56746d1df74a439b701fe8b58c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aramid fibers</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Electrodeposition</topic><topic>Electroless deposition</topic><topic>Electroless plating</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Fabrics</topic><topic>Fire damage</topic><topic>Flame retardants</topic><topic>Harsh environments</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Kevlar (trademark)</topic><topic>Metal coatings</topic><topic>Metallizing</topic><topic>Polymers</topic><topic>Stresses</topic><topic>Tensile strength</topic><topic>Textile composites</topic><topic>Textiles</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Ye, Yusheng</creatorcontrib><creatorcontrib>Shang, Wenhui</creatorcontrib><creatorcontrib>Huang, Simin</creatorcontrib><creatorcontrib>Wang, Haifei</creatorcontrib><creatorcontrib>Gan, Tiansheng</creatorcontrib><creatorcontrib>Chen, Guokang</creatorcontrib><creatorcontrib>Deng, Libo</creatorcontrib><creatorcontrib>Wu, Qixing</creatorcontrib><creatorcontrib>Zhou, Xuechang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xi</au><au>Ye, Yusheng</au><au>Shang, Wenhui</au><au>Huang, Simin</au><au>Wang, Haifei</au><au>Gan, Tiansheng</au><au>Chen, Guokang</au><au>Deng, Libo</au><au>Wu, Qixing</au><au>Zhou, Xuechang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-10-18</date><risdate>2022</risdate><volume>1</volume><issue>4</issue><spage>21379</spage><epage>21389</epage><pages>21379-21389</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Conductive textiles are promising components for next-generation wearable electronics. However, it is still a challenge for current conductive textiles and wearable electronic devices to survive in harsh environments, such as extreme mechanical damages and low/high-temperature stresses. Herein, we report ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKFs) fabricated
via
polymer-assisted electroless deposition (ELD) and electrodeposition (ED) techniques. The combination of ELD and ED techniques effectively metallizes the Kevlar fabrics, enabling ultrahigh conductivity (sheet resistance <0.007 Ω sq
−1
). More importantly, the deposited metal layers significantly enhance the anti-impact properties of Kevlar fabrics by 2-3 times. Due to the inherent properties of Kevlar and effective metal coatings, the MKFs maintain conductivity while suffering various mechanical damages (GPa-scale tensile strength, cutting, sticking,
etc.
), high temperatures (∼300 °C), and even flame stresses. Surprisingly, the MKFs show intrinsic weldability with traditional solder materials. The multifunctional applications of such high-performance metallized fabrics are demonstrated as textile-based conductors, heaters, and supercapacitors, all of which could survive in extremely harsh conditions.
Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKF) were fabricated
via
polymer-assisted electroless deposition and electrodeposition techniques.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta05702f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9388-157X</orcidid><orcidid>https://orcid.org/0000-0002-1558-9423</orcidid><orcidid>https://orcid.org/0000-0002-0921-8925</orcidid><orcidid>https://orcid.org/0000-0001-7141-0419</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21379-21389 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2725828345 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Aramid fibers Conductivity Conductors Electrodeposition Electroless deposition Electroless plating Electronic devices Electronic equipment Fabrics Fire damage Flame retardants Harsh environments Heat resistance High temperature Kevlar (trademark) Metal coatings Metallizing Polymers Stresses Tensile strength Textile composites Textiles Wearable technology |
title | Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrastrong,%20flame-retardant,%20intrinsically%20weldable,%20and%20highly%20conductive%20metallized%20Kevlar%20fabrics&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Lu,%20Xi&rft.date=2022-10-18&rft.volume=1&rft.issue=4&rft.spage=21379&rft.epage=21389&rft.pages=21379-21389&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta05702f&rft_dat=%3Cproquest_rsc_p%3E2725828345%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725828345&rft_id=info:pmid/&rfr_iscdi=true |