Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics
Conductive textiles are promising components for next-generation wearable electronics. However, it is still a challenge for current conductive textiles and wearable electronic devices to survive in harsh environments, such as extreme mechanical damages and low/high-temperature stresses. Herein, we r...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-10, Vol.1 (4), p.21379-21389 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conductive textiles are promising components for next-generation wearable electronics. However, it is still a challenge for current conductive textiles and wearable electronic devices to survive in harsh environments, such as extreme mechanical damages and low/high-temperature stresses. Herein, we report ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics (MKFs) fabricated
via
polymer-assisted electroless deposition (ELD) and electrodeposition (ED) techniques. The combination of ELD and ED techniques effectively metallizes the Kevlar fabrics, enabling ultrahigh conductivity (sheet resistance |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/d2ta05702f |