Systematic Evaluation of Predictive Fairness

Mitigating bias in training on biased datasets is an important open problem. Several techniques have been proposed, however the typical evaluation regime is very limited, considering very narrow data conditions. For instance, the effect of target class imbalance and stereotyping is under-studied. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Han, Xudong, Shen, Aili, Cohn, Trevor, Baldwin, Timothy, Frermann, Lea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mitigating bias in training on biased datasets is an important open problem. Several techniques have been proposed, however the typical evaluation regime is very limited, considering very narrow data conditions. For instance, the effect of target class imbalance and stereotyping is under-studied. To address this gap, we examine the performance of various debiasing methods across multiple tasks, spanning binary classification (Twitter sentiment), multi-class classification (profession prediction), and regression (valence prediction). Through extensive experimentation, we find that data conditions have a strong influence on relative model performance, and that general conclusions cannot be drawn about method efficacy when evaluating only on standard datasets, as is current practice in fairness research.
ISSN:2331-8422