Cut-off phenomenon for the ax+b Markov chain over a finite field
We study the Markov chain x n + 1 = a x n + b n on a finite field F p , where a ∈ F p × is fixed and b n are independent and identically distributed random variables in F p . Conditionally on the Riemann hypothesis for all Dedekind zeta functions, we show that the chain exhibits a cut-off phenomenon...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2022-10, Vol.184 (1-2), p.85-113 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Markov chain
x
n
+
1
=
a
x
n
+
b
n
on a finite field
F
p
, where
a
∈
F
p
×
is fixed and
b
n
are independent and identically distributed random variables in
F
p
. Conditionally on the Riemann hypothesis for all Dedekind zeta functions, we show that the chain exhibits a cut-off phenomenon for most primes
p
and most values of
a
∈
F
p
×
. We also obtain weaker, but unconditional, upper bounds for the mixing time. |
---|---|
ISSN: | 0178-8051 1432-2064 |
DOI: | 10.1007/s00440-022-01161-w |