Cut-off phenomenon for the ax+b Markov chain over a finite field

We study the Markov chain x n + 1 = a x n + b n on a finite field F p , where a ∈ F p × is fixed and b n are independent and identically distributed random variables in F p . Conditionally on the Riemann hypothesis for all Dedekind zeta functions, we show that the chain exhibits a cut-off phenomenon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2022-10, Vol.184 (1-2), p.85-113
Hauptverfasser: Breuillard, Emmanuel, Varjú, Péter P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Markov chain x n + 1 = a x n + b n on a finite field F p , where a ∈ F p × is fixed and b n are independent and identically distributed random variables in F p . Conditionally on the Riemann hypothesis for all Dedekind zeta functions, we show that the chain exhibits a cut-off phenomenon for most primes p and most values of a ∈ F p × . We also obtain weaker, but unconditional, upper bounds for the mixing time.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-022-01161-w