Conformal metric-affine gravities

We revisit the gauge symmetry related to integrable projective transformations in metric-affine formalism, identifying the gauge field of the Weyl (conformal) symmetry as a dynamical component of the affine connection. In particular, we show how to include the local scaling symmetry as a gauge symme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cosmology and astroparticle physics 2022-10, Vol.2022 (10), p.57
Hauptverfasser: Olmo, Gonzalo J., Orazi, Emanuele, Pradisi, Gianfranco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit the gauge symmetry related to integrable projective transformations in metric-affine formalism, identifying the gauge field of the Weyl (conformal) symmetry as a dynamical component of the affine connection. In particular, we show how to include the local scaling symmetry as a gauge symmetry of a large class of geometric gravity theories, introducing a compensator dilaton field that naturally gives rise to a Stückelberg sector where a spontaneous breaking mechanism of the conformal symmetry is at work to generate a mass scale for the gauge field. For Ricci-based gravities that include, among others, General Relativity, f ( R ) and f ( R , R μν R μν ) theories and the EiBI model, we prove that the on-shell gauge vector associated to the scaling symmetry can be identified with the torsion vector, thus recovering and generalizing conformal invariant theories in the Riemann-Cartan formalism, already present in the literature.
ISSN:1475-7516
1475-7516
DOI:10.1088/1475-7516/2022/10/057