Query Rewriting for Effective Misinformation Discovery
We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synony...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kazemi, Ashkan Abzaliev, Artem Deng, Naihao Hou, Rui Hale, Scott A Pérez-Rosas, Verónica Mihalcea, Rada |
description | We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synonym; change verb tense into present simple) are automatically learned through offline reinforcement learning. Our model uses a decision transformer to learn a sequence of editing actions that maximizes query retrieval metrics such as mean average precision. We conduct a series of experiments showing that our query rewriting system achieves a relative increase in the effectiveness of the queries of up to 42%, while producing editing action sequences that are human interpretable. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2725460674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725460674</sourcerecordid><originalsourceid>FETCH-proquest_journals_27254606743</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCyxNLapUCEotL8osycxLV0jLL1JwTUtLTS7JLEtV8M0szswDCuUmlmTm5ym4ZBYn55cBNfAwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLwR0CYTMwMzcxNj4lQBAAXKNeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725460674</pqid></control><display><type>article</type><title>Query Rewriting for Effective Misinformation Discovery</title><source>Free E- Journals</source><creator>Kazemi, Ashkan ; Abzaliev, Artem ; Deng, Naihao ; Hou, Rui ; Hale, Scott A ; Pérez-Rosas, Verónica ; Mihalcea, Rada</creator><creatorcontrib>Kazemi, Ashkan ; Abzaliev, Artem ; Deng, Naihao ; Hou, Rui ; Hale, Scott A ; Pérez-Rosas, Verónica ; Mihalcea, Rada</creatorcontrib><description>We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synonym; change verb tense into present simple) are automatically learned through offline reinforcement learning. Our model uses a decision transformer to learn a sequence of editing actions that maximizes query retrieval metrics such as mean average precision. We conduct a series of experiments showing that our query rewriting system achieves a relative increase in the effectiveness of the queries of up to 42%, while producing editing action sequences that are human interpretable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Editing ; Learning ; Queries ; Sequences</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kazemi, Ashkan</creatorcontrib><creatorcontrib>Abzaliev, Artem</creatorcontrib><creatorcontrib>Deng, Naihao</creatorcontrib><creatorcontrib>Hou, Rui</creatorcontrib><creatorcontrib>Hale, Scott A</creatorcontrib><creatorcontrib>Pérez-Rosas, Verónica</creatorcontrib><creatorcontrib>Mihalcea, Rada</creatorcontrib><title>Query Rewriting for Effective Misinformation Discovery</title><title>arXiv.org</title><description>We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synonym; change verb tense into present simple) are automatically learned through offline reinforcement learning. Our model uses a decision transformer to learn a sequence of editing actions that maximizes query retrieval metrics such as mean average precision. We conduct a series of experiments showing that our query rewriting system achieves a relative increase in the effectiveness of the queries of up to 42%, while producing editing action sequences that are human interpretable.</description><subject>Editing</subject><subject>Learning</subject><subject>Queries</subject><subject>Sequences</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCyxNLapUCEotL8osycxLV0jLL1JwTUtLTS7JLEtV8M0szswDCuUmlmTm5ym4ZBYn55cBNfAwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLwR0CYTMwMzcxNj4lQBAAXKNeE</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Kazemi, Ashkan</creator><creator>Abzaliev, Artem</creator><creator>Deng, Naihao</creator><creator>Hou, Rui</creator><creator>Hale, Scott A</creator><creator>Pérez-Rosas, Verónica</creator><creator>Mihalcea, Rada</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231002</creationdate><title>Query Rewriting for Effective Misinformation Discovery</title><author>Kazemi, Ashkan ; Abzaliev, Artem ; Deng, Naihao ; Hou, Rui ; Hale, Scott A ; Pérez-Rosas, Verónica ; Mihalcea, Rada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27254606743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Editing</topic><topic>Learning</topic><topic>Queries</topic><topic>Sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Kazemi, Ashkan</creatorcontrib><creatorcontrib>Abzaliev, Artem</creatorcontrib><creatorcontrib>Deng, Naihao</creatorcontrib><creatorcontrib>Hou, Rui</creatorcontrib><creatorcontrib>Hale, Scott A</creatorcontrib><creatorcontrib>Pérez-Rosas, Verónica</creatorcontrib><creatorcontrib>Mihalcea, Rada</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazemi, Ashkan</au><au>Abzaliev, Artem</au><au>Deng, Naihao</au><au>Hou, Rui</au><au>Hale, Scott A</au><au>Pérez-Rosas, Verónica</au><au>Mihalcea, Rada</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Query Rewriting for Effective Misinformation Discovery</atitle><jtitle>arXiv.org</jtitle><date>2023-10-02</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synonym; change verb tense into present simple) are automatically learned through offline reinforcement learning. Our model uses a decision transformer to learn a sequence of editing actions that maximizes query retrieval metrics such as mean average precision. We conduct a series of experiments showing that our query rewriting system achieves a relative increase in the effectiveness of the queries of up to 42%, while producing editing action sequences that are human interpretable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2725460674 |
source | Free E- Journals |
subjects | Editing Learning Queries Sequences |
title | Query Rewriting for Effective Misinformation Discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Query%20Rewriting%20for%20Effective%20Misinformation%20Discovery&rft.jtitle=arXiv.org&rft.au=Kazemi,%20Ashkan&rft.date=2023-10-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2725460674%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725460674&rft_id=info:pmid/&rfr_iscdi=true |