Query Rewriting for Effective Misinformation Discovery

We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synony...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Kazemi, Ashkan, Abzaliev, Artem, Deng, Naihao, Hou, Rui, Hale, Scott A, Pérez-Rosas, Verónica, Mihalcea, Rada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kazemi, Ashkan
Abzaliev, Artem
Deng, Naihao
Hou, Rui
Hale, Scott A
Pérez-Rosas, Verónica
Mihalcea, Rada
description We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synonym; change verb tense into present simple) are automatically learned through offline reinforcement learning. Our model uses a decision transformer to learn a sequence of editing actions that maximizes query retrieval metrics such as mean average precision. We conduct a series of experiments showing that our query rewriting system achieves a relative increase in the effectiveness of the queries of up to 42%, while producing editing action sequences that are human interpretable.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2725460674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725460674</sourcerecordid><originalsourceid>FETCH-proquest_journals_27254606743</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCyxNLapUCEotL8osycxLV0jLL1JwTUtLTS7JLEtV8M0szswDCuUmlmTm5ym4ZBYn55cBNfAwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLwR0CYTMwMzcxNj4lQBAAXKNeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725460674</pqid></control><display><type>article</type><title>Query Rewriting for Effective Misinformation Discovery</title><source>Free E- Journals</source><creator>Kazemi, Ashkan ; Abzaliev, Artem ; Deng, Naihao ; Hou, Rui ; Hale, Scott A ; Pérez-Rosas, Verónica ; Mihalcea, Rada</creator><creatorcontrib>Kazemi, Ashkan ; Abzaliev, Artem ; Deng, Naihao ; Hou, Rui ; Hale, Scott A ; Pérez-Rosas, Verónica ; Mihalcea, Rada</creatorcontrib><description>We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synonym; change verb tense into present simple) are automatically learned through offline reinforcement learning. Our model uses a decision transformer to learn a sequence of editing actions that maximizes query retrieval metrics such as mean average precision. We conduct a series of experiments showing that our query rewriting system achieves a relative increase in the effectiveness of the queries of up to 42%, while producing editing action sequences that are human interpretable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Editing ; Learning ; Queries ; Sequences</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kazemi, Ashkan</creatorcontrib><creatorcontrib>Abzaliev, Artem</creatorcontrib><creatorcontrib>Deng, Naihao</creatorcontrib><creatorcontrib>Hou, Rui</creatorcontrib><creatorcontrib>Hale, Scott A</creatorcontrib><creatorcontrib>Pérez-Rosas, Verónica</creatorcontrib><creatorcontrib>Mihalcea, Rada</creatorcontrib><title>Query Rewriting for Effective Misinformation Discovery</title><title>arXiv.org</title><description>We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synonym; change verb tense into present simple) are automatically learned through offline reinforcement learning. Our model uses a decision transformer to learn a sequence of editing actions that maximizes query retrieval metrics such as mean average precision. We conduct a series of experiments showing that our query rewriting system achieves a relative increase in the effectiveness of the queries of up to 42%, while producing editing action sequences that are human interpretable.</description><subject>Editing</subject><subject>Learning</subject><subject>Queries</subject><subject>Sequences</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCyxNLapUCEotL8osycxLV0jLL1JwTUtLTS7JLEtV8M0szswDCuUmlmTm5ym4ZBYn55cBNfAwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLwR0CYTMwMzcxNj4lQBAAXKNeE</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Kazemi, Ashkan</creator><creator>Abzaliev, Artem</creator><creator>Deng, Naihao</creator><creator>Hou, Rui</creator><creator>Hale, Scott A</creator><creator>Pérez-Rosas, Verónica</creator><creator>Mihalcea, Rada</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231002</creationdate><title>Query Rewriting for Effective Misinformation Discovery</title><author>Kazemi, Ashkan ; Abzaliev, Artem ; Deng, Naihao ; Hou, Rui ; Hale, Scott A ; Pérez-Rosas, Verónica ; Mihalcea, Rada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27254606743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Editing</topic><topic>Learning</topic><topic>Queries</topic><topic>Sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Kazemi, Ashkan</creatorcontrib><creatorcontrib>Abzaliev, Artem</creatorcontrib><creatorcontrib>Deng, Naihao</creatorcontrib><creatorcontrib>Hou, Rui</creatorcontrib><creatorcontrib>Hale, Scott A</creatorcontrib><creatorcontrib>Pérez-Rosas, Verónica</creatorcontrib><creatorcontrib>Mihalcea, Rada</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazemi, Ashkan</au><au>Abzaliev, Artem</au><au>Deng, Naihao</au><au>Hou, Rui</au><au>Hale, Scott A</au><au>Pérez-Rosas, Verónica</au><au>Mihalcea, Rada</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Query Rewriting for Effective Misinformation Discovery</atitle><jtitle>arXiv.org</jtitle><date>2023-10-02</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synonym; change verb tense into present simple) are automatically learned through offline reinforcement learning. Our model uses a decision transformer to learn a sequence of editing actions that maximizes query retrieval metrics such as mean average precision. We conduct a series of experiments showing that our query rewriting system achieves a relative increase in the effectiveness of the queries of up to 42%, while producing editing action sequences that are human interpretable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2725460674
source Free E- Journals
subjects Editing
Learning
Queries
Sequences
title Query Rewriting for Effective Misinformation Discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Query%20Rewriting%20for%20Effective%20Misinformation%20Discovery&rft.jtitle=arXiv.org&rft.au=Kazemi,%20Ashkan&rft.date=2023-10-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2725460674%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725460674&rft_id=info:pmid/&rfr_iscdi=true