Query Rewriting for Effective Misinformation Discovery

We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synony...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Kazemi, Ashkan, Abzaliev, Artem, Deng, Naihao, Hou, Rui, Hale, Scott A, Pérez-Rosas, Verónica, Mihalcea, Rada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synonym; change verb tense into present simple) are automatically learned through offline reinforcement learning. Our model uses a decision transformer to learn a sequence of editing actions that maximizes query retrieval metrics such as mean average precision. We conduct a series of experiments showing that our query rewriting system achieves a relative increase in the effectiveness of the queries of up to 42%, while producing editing action sequences that are human interpretable.
ISSN:2331-8422