A real-time GP based MPC for quadcopters with unknown disturbances
Gaussian Process (GP) regressions have proven to be a valuable tool to predict disturbances and model mismatches and incorporate this information into a Model Predictive Control (MPC) prediction. Unfortunately, the computational complexity of inference and learning on classical GPs scales cubically,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gaussian Process (GP) regressions have proven to be a valuable tool to predict disturbances and model mismatches and incorporate this information into a Model Predictive Control (MPC) prediction. Unfortunately, the computational complexity of inference and learning on classical GPs scales cubically, which is intractable for real-time applications. Thus GPs are commonly trained offline, which is not suited for learning disturbances as their dynamics may vary with time. Recently, state-space formulation of GPs has been introduced, allowing inference and learning with linear computational complexity. This paper presents a framework that enables online learning of disturbance dynamics on quadcopters, which can be executed within milliseconds using a state-space formulation of GPs. The obtained disturbance predictions are combined with MPC leading to a significant performance increase in simulations with jMAVSim. The computational burden is evaluated on a Raspberry Pi 4 B to prove the real-time applicability. |
---|---|
ISSN: | 2331-8422 |