Li-Yorke chaos for maps on G-Spaces
We introduce the definition of Li-Yorke chaos for the map f on G-spaces, and show G-Li-Yorke chaos is iterable for f. Li-Yorke chaos implies G-Li-Yorke chaos, while the converse is not true. Then we give a sufficient condition for f to be chaotic in the sense of G-Li-Yorke. Also, we prove that if f...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the definition of Li-Yorke chaos for the map f on G-spaces, and show G-Li-Yorke chaos is iterable for f. Li-Yorke chaos implies G-Li-Yorke chaos, while the converse is not true. Then we give a sufficient condition for f to be chaotic in the sense of G-Li-Yorke. Also, we prove that if f is G-transitive and there exists a common fixed point for f and all of the maps in G, then f is chaotic in the sense of G-Li-Yorke. |
---|---|
ISSN: | 2331-8422 |