The Distribution of Unstable Fixed Points in Chaotic Neural Networks

We analytically determine the number and distribution of fixed points in a canonical model of a chaotic neural network. This distribution reveals that fixed points and dynamics are confined to separate shells in phase space. Furthermore, the distribution enables us to determine the eigenvalue spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Stubenrauch, Jakob, Keup, Christian, Kurth, Anno C, Helias, Moritz, Alexander van Meegen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analytically determine the number and distribution of fixed points in a canonical model of a chaotic neural network. This distribution reveals that fixed points and dynamics are confined to separate shells in phase space. Furthermore, the distribution enables us to determine the eigenvalue spectra of the Jacobian at the fixed points. Despite the radial separation of fixed points and dynamics, we find that nearby fixed points act as partially attracting landmarks for the dynamics.
ISSN:2331-8422