Non-Abelian Toda lattice and analogs of Painlevé III equation
In integrable models, stationary equations for higher symmetries serve as one of the main sources of reductions consistent with dynamics. We apply this method to the non-Abelian two-dimensional Toda lattice. It is shown that already the stationary equation of the simplest higher flow gives a non-tri...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2022-10, Vol.63 (10) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 63 |
creator | Adler, V. E. Kolesnikov, M. P. |
description | In integrable models, stationary equations for higher symmetries serve as one of the main sources of reductions consistent with dynamics. We apply this method to the non-Abelian two-dimensional Toda lattice. It is shown that already the stationary equation of the simplest higher flow gives a non-trivial non-autonomous constraint that reduces the Toda lattice to a non-Abelian analog of pumped Maxwell–Bloch equations. The Toda lattice itself is interpreted as an auto-Bäcklund transformation acting on the solutions of this system. Further self-similar reduction leads to non-Abelian analogs of the Painlevé III equation. |
doi_str_mv | 10.1063/5.0091939 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2725411600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725411600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-117f41ffbc4816c4c75d99fb39cf3d469ff8c0e4da9dd9ba6198c57e6d33aaee3</originalsourceid><addsrcrecordid>eNqd0M9KAzEQBvAgCtbqwTcIeFLYmtlks8lFKKXqQlEP9Ryy-SNb1k2bbAs-ks_hi7nagncPw1x-fMx8CF0CmQDh9LaYECJBUnmERkCEzEpeiGM0IiTPs5wJcYrOUloRAiAYG6G7p9Bl09q1je7wMliNW933jXFYd3YY3Ya3hIPHL7rpWrf7-sRVVWG32eq-Cd05OvG6Te7isMfo9X6-nD1mi-eHajZdZIbmZZ8BlJ6B97VhArhhpiyslL6m0nhqGZfeC0Mcs1paK2vNQQpTlI5bSrV2jo7R1T53HcNm61KvVmEbh-uSysu8YACckEFd75WJIaXovFrH5l3HDwVE_dSjCnWoZ7A3e5tM0__-8j-8C_EPqrX19BvT5HMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725411600</pqid></control><display><type>article</type><title>Non-Abelian Toda lattice and analogs of Painlevé III equation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Adler, V. E. ; Kolesnikov, M. P.</creator><creatorcontrib>Adler, V. E. ; Kolesnikov, M. P.</creatorcontrib><description>In integrable models, stationary equations for higher symmetries serve as one of the main sources of reductions consistent with dynamics. We apply this method to the non-Abelian two-dimensional Toda lattice. It is shown that already the stationary equation of the simplest higher flow gives a non-trivial non-autonomous constraint that reduces the Toda lattice to a non-Abelian analog of pumped Maxwell–Bloch equations. The Toda lattice itself is interpreted as an auto-Bäcklund transformation acting on the solutions of this system. Further self-similar reduction leads to non-Abelian analogs of the Painlevé III equation.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0091939</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Analogs ; Physics ; Self-similarity</subject><ispartof>Journal of mathematical physics, 2022-10, Vol.63 (10)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-117f41ffbc4816c4c75d99fb39cf3d469ff8c0e4da9dd9ba6198c57e6d33aaee3</citedby><cites>FETCH-LOGICAL-c327t-117f41ffbc4816c4c75d99fb39cf3d469ff8c0e4da9dd9ba6198c57e6d33aaee3</cites><orcidid>0000-0001-9408-1013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0091939$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Adler, V. E.</creatorcontrib><creatorcontrib>Kolesnikov, M. P.</creatorcontrib><title>Non-Abelian Toda lattice and analogs of Painlevé III equation</title><title>Journal of mathematical physics</title><description>In integrable models, stationary equations for higher symmetries serve as one of the main sources of reductions consistent with dynamics. We apply this method to the non-Abelian two-dimensional Toda lattice. It is shown that already the stationary equation of the simplest higher flow gives a non-trivial non-autonomous constraint that reduces the Toda lattice to a non-Abelian analog of pumped Maxwell–Bloch equations. The Toda lattice itself is interpreted as an auto-Bäcklund transformation acting on the solutions of this system. Further self-similar reduction leads to non-Abelian analogs of the Painlevé III equation.</description><subject>Analogs</subject><subject>Physics</subject><subject>Self-similarity</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0M9KAzEQBvAgCtbqwTcIeFLYmtlks8lFKKXqQlEP9Ryy-SNb1k2bbAs-ks_hi7nagncPw1x-fMx8CF0CmQDh9LaYECJBUnmERkCEzEpeiGM0IiTPs5wJcYrOUloRAiAYG6G7p9Bl09q1je7wMliNW933jXFYd3YY3Ya3hIPHL7rpWrf7-sRVVWG32eq-Cd05OvG6Te7isMfo9X6-nD1mi-eHajZdZIbmZZ8BlJ6B97VhArhhpiyslL6m0nhqGZfeC0Mcs1paK2vNQQpTlI5bSrV2jo7R1T53HcNm61KvVmEbh-uSysu8YACckEFd75WJIaXovFrH5l3HDwVE_dSjCnWoZ7A3e5tM0__-8j-8C_EPqrX19BvT5HMM</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Adler, V. E.</creator><creator>Kolesnikov, M. P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9408-1013</orcidid></search><sort><creationdate>20221001</creationdate><title>Non-Abelian Toda lattice and analogs of Painlevé III equation</title><author>Adler, V. E. ; Kolesnikov, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-117f41ffbc4816c4c75d99fb39cf3d469ff8c0e4da9dd9ba6198c57e6d33aaee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analogs</topic><topic>Physics</topic><topic>Self-similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adler, V. E.</creatorcontrib><creatorcontrib>Kolesnikov, M. P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adler, V. E.</au><au>Kolesnikov, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Abelian Toda lattice and analogs of Painlevé III equation</atitle><jtitle>Journal of mathematical physics</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>63</volume><issue>10</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In integrable models, stationary equations for higher symmetries serve as one of the main sources of reductions consistent with dynamics. We apply this method to the non-Abelian two-dimensional Toda lattice. It is shown that already the stationary equation of the simplest higher flow gives a non-trivial non-autonomous constraint that reduces the Toda lattice to a non-Abelian analog of pumped Maxwell–Bloch equations. The Toda lattice itself is interpreted as an auto-Bäcklund transformation acting on the solutions of this system. Further self-similar reduction leads to non-Abelian analogs of the Painlevé III equation.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0091939</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9408-1013</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2022-10, Vol.63 (10) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2725411600 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Analogs Physics Self-similarity |
title | Non-Abelian Toda lattice and analogs of Painlevé III equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Abelian%20Toda%20lattice%20and%20analogs%20of%20Painlev%C3%A9%20III%20equation&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Adler,%20V.%20E.&rft.date=2022-10-01&rft.volume=63&rft.issue=10&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0091939&rft_dat=%3Cproquest_cross%3E2725411600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725411600&rft_id=info:pmid/&rfr_iscdi=true |