Non-Abelian Toda lattice and analogs of Painlevé III equation

In integrable models, stationary equations for higher symmetries serve as one of the main sources of reductions consistent with dynamics. We apply this method to the non-Abelian two-dimensional Toda lattice. It is shown that already the stationary equation of the simplest higher flow gives a non-tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2022-10, Vol.63 (10)
Hauptverfasser: Adler, V. E., Kolesnikov, M. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of mathematical physics
container_volume 63
creator Adler, V. E.
Kolesnikov, M. P.
description In integrable models, stationary equations for higher symmetries serve as one of the main sources of reductions consistent with dynamics. We apply this method to the non-Abelian two-dimensional Toda lattice. It is shown that already the stationary equation of the simplest higher flow gives a non-trivial non-autonomous constraint that reduces the Toda lattice to a non-Abelian analog of pumped Maxwell–Bloch equations. The Toda lattice itself is interpreted as an auto-Bäcklund transformation acting on the solutions of this system. Further self-similar reduction leads to non-Abelian analogs of the Painlevé III equation.
doi_str_mv 10.1063/5.0091939
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2725411600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725411600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-117f41ffbc4816c4c75d99fb39cf3d469ff8c0e4da9dd9ba6198c57e6d33aaee3</originalsourceid><addsrcrecordid>eNqd0M9KAzEQBvAgCtbqwTcIeFLYmtlks8lFKKXqQlEP9Ryy-SNb1k2bbAs-ks_hi7nagncPw1x-fMx8CF0CmQDh9LaYECJBUnmERkCEzEpeiGM0IiTPs5wJcYrOUloRAiAYG6G7p9Bl09q1je7wMliNW933jXFYd3YY3Ya3hIPHL7rpWrf7-sRVVWG32eq-Cd05OvG6Te7isMfo9X6-nD1mi-eHajZdZIbmZZ8BlJ6B97VhArhhpiyslL6m0nhqGZfeC0Mcs1paK2vNQQpTlI5bSrV2jo7R1T53HcNm61KvVmEbh-uSysu8YACckEFd75WJIaXovFrH5l3HDwVE_dSjCnWoZ7A3e5tM0__-8j-8C_EPqrX19BvT5HMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725411600</pqid></control><display><type>article</type><title>Non-Abelian Toda lattice and analogs of Painlevé III equation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Adler, V. E. ; Kolesnikov, M. P.</creator><creatorcontrib>Adler, V. E. ; Kolesnikov, M. P.</creatorcontrib><description>In integrable models, stationary equations for higher symmetries serve as one of the main sources of reductions consistent with dynamics. We apply this method to the non-Abelian two-dimensional Toda lattice. It is shown that already the stationary equation of the simplest higher flow gives a non-trivial non-autonomous constraint that reduces the Toda lattice to a non-Abelian analog of pumped Maxwell–Bloch equations. The Toda lattice itself is interpreted as an auto-Bäcklund transformation acting on the solutions of this system. Further self-similar reduction leads to non-Abelian analogs of the Painlevé III equation.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0091939</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Analogs ; Physics ; Self-similarity</subject><ispartof>Journal of mathematical physics, 2022-10, Vol.63 (10)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-117f41ffbc4816c4c75d99fb39cf3d469ff8c0e4da9dd9ba6198c57e6d33aaee3</citedby><cites>FETCH-LOGICAL-c327t-117f41ffbc4816c4c75d99fb39cf3d469ff8c0e4da9dd9ba6198c57e6d33aaee3</cites><orcidid>0000-0001-9408-1013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0091939$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Adler, V. E.</creatorcontrib><creatorcontrib>Kolesnikov, M. P.</creatorcontrib><title>Non-Abelian Toda lattice and analogs of Painlevé III equation</title><title>Journal of mathematical physics</title><description>In integrable models, stationary equations for higher symmetries serve as one of the main sources of reductions consistent with dynamics. We apply this method to the non-Abelian two-dimensional Toda lattice. It is shown that already the stationary equation of the simplest higher flow gives a non-trivial non-autonomous constraint that reduces the Toda lattice to a non-Abelian analog of pumped Maxwell–Bloch equations. The Toda lattice itself is interpreted as an auto-Bäcklund transformation acting on the solutions of this system. Further self-similar reduction leads to non-Abelian analogs of the Painlevé III equation.</description><subject>Analogs</subject><subject>Physics</subject><subject>Self-similarity</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0M9KAzEQBvAgCtbqwTcIeFLYmtlks8lFKKXqQlEP9Ryy-SNb1k2bbAs-ks_hi7nagncPw1x-fMx8CF0CmQDh9LaYECJBUnmERkCEzEpeiGM0IiTPs5wJcYrOUloRAiAYG6G7p9Bl09q1je7wMliNW933jXFYd3YY3Ya3hIPHL7rpWrf7-sRVVWG32eq-Cd05OvG6Te7isMfo9X6-nD1mi-eHajZdZIbmZZ8BlJ6B97VhArhhpiyslL6m0nhqGZfeC0Mcs1paK2vNQQpTlI5bSrV2jo7R1T53HcNm61KvVmEbh-uSysu8YACckEFd75WJIaXovFrH5l3HDwVE_dSjCnWoZ7A3e5tM0__-8j-8C_EPqrX19BvT5HMM</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Adler, V. E.</creator><creator>Kolesnikov, M. P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9408-1013</orcidid></search><sort><creationdate>20221001</creationdate><title>Non-Abelian Toda lattice and analogs of Painlevé III equation</title><author>Adler, V. E. ; Kolesnikov, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-117f41ffbc4816c4c75d99fb39cf3d469ff8c0e4da9dd9ba6198c57e6d33aaee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analogs</topic><topic>Physics</topic><topic>Self-similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adler, V. E.</creatorcontrib><creatorcontrib>Kolesnikov, M. P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adler, V. E.</au><au>Kolesnikov, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Abelian Toda lattice and analogs of Painlevé III equation</atitle><jtitle>Journal of mathematical physics</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>63</volume><issue>10</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In integrable models, stationary equations for higher symmetries serve as one of the main sources of reductions consistent with dynamics. We apply this method to the non-Abelian two-dimensional Toda lattice. It is shown that already the stationary equation of the simplest higher flow gives a non-trivial non-autonomous constraint that reduces the Toda lattice to a non-Abelian analog of pumped Maxwell–Bloch equations. The Toda lattice itself is interpreted as an auto-Bäcklund transformation acting on the solutions of this system. Further self-similar reduction leads to non-Abelian analogs of the Painlevé III equation.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0091939</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9408-1013</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2022-10, Vol.63 (10)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2725411600
source AIP Journals Complete; Alma/SFX Local Collection
subjects Analogs
Physics
Self-similarity
title Non-Abelian Toda lattice and analogs of Painlevé III equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Abelian%20Toda%20lattice%20and%20analogs%20of%20Painlev%C3%A9%20III%20equation&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Adler,%20V.%20E.&rft.date=2022-10-01&rft.volume=63&rft.issue=10&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0091939&rft_dat=%3Cproquest_cross%3E2725411600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725411600&rft_id=info:pmid/&rfr_iscdi=true