Non-Abelian Toda lattice and analogs of Painlevé III equation

In integrable models, stationary equations for higher symmetries serve as one of the main sources of reductions consistent with dynamics. We apply this method to the non-Abelian two-dimensional Toda lattice. It is shown that already the stationary equation of the simplest higher flow gives a non-tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2022-10, Vol.63 (10)
Hauptverfasser: Adler, V. E., Kolesnikov, M. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In integrable models, stationary equations for higher symmetries serve as one of the main sources of reductions consistent with dynamics. We apply this method to the non-Abelian two-dimensional Toda lattice. It is shown that already the stationary equation of the simplest higher flow gives a non-trivial non-autonomous constraint that reduces the Toda lattice to a non-Abelian analog of pumped Maxwell–Bloch equations. The Toda lattice itself is interpreted as an auto-Bäcklund transformation acting on the solutions of this system. Further self-similar reduction leads to non-Abelian analogs of the Painlevé III equation.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0091939