A dielectrophoresis proof of concept of polystyrene particles and in‐vitro human epidermal keratinocytes migration for wound rejuvenation

Diabetes affects approximately 170 million people worldwide, is expected to double by 2030, and is a severe problem. Electrical stimulation (ES) via dielectrophoresis (DEP) technique may be an effective alternative in enhancing healing rates in diabetic patients with open ulcers. This research used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2022-11, Vol.139 (44), p.n/a
Hauptverfasser: Deivasigamani, Revathy, Maidin, Nur Nasyifa Mohd, Nasir, Nur Shahira Abdul, Low, Mei Xian, Kayani, Aminuddin Bin Ahmad, Mohamed, Mohd Ambri, Buyong, Muhamad Ramdzan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page
container_title Journal of applied polymer science
container_volume 139
creator Deivasigamani, Revathy
Maidin, Nur Nasyifa Mohd
Nasir, Nur Shahira Abdul
Low, Mei Xian
Kayani, Aminuddin Bin Ahmad
Mohamed, Mohd Ambri
Buyong, Muhamad Ramdzan
description Diabetes affects approximately 170 million people worldwide, is expected to double by 2030, and is a severe problem. Electrical stimulation (ES) via dielectrophoresis (DEP) technique may be an effective alternative in enhancing healing rates in diabetic patients with open ulcers. This research used DEP force (FDEP) to manipulate 3.2, 4.8, 10, and 15 μm polystyrene (PS) particles to predict the migration capability of human epidermal keratinocytes (HEKs). A numerical modeling method, MyDEP, was used to predict the interpretation of Clausius–Mossotti factors of PS particles and HEKs. The finite element method computes the electric field intensity and particle trajectory based on DEP and drag forces in their respective medium. DEP experiments on numerous size PS particles and alive HEKs were carried out in a tapered aluminium microelectrode array using a non‐uniform electric field. The distinct PS particles exhibit positive DEP (PDEP), crossover frequency (fXO), and negative DEP (NDEP), whereas the HEKs experience, only NDEP due to its high conductive medium in frequency ranges from 100 kHz to 1 MHz. Finally, the DIPP‐MotionV analysis shows that particle mobility between speed and acceleration is statistically considerable. When an appropriate frequency is applied to HEKs in random locations, the FDEP aligns at the desired target position based on its dielectric properties, which accelerates wound healing in in‐vivo conditions.
doi_str_mv 10.1002/app.53096
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2725213549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725213549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2976-65c2cd3240b9f27f20e72f039a76d779bd0336a5e4890dd01e79e46f9f48b48c3</originalsourceid><addsrcrecordid>eNp1kLlOAzEQhi0EEuEoeANLVBQLtvfwuowQl4RECqhXjncMDhvb2LuJtqOn4Rl5EpyEFmmkub6Z0fwInVFySQlhV9L7yzInotpDE0oEz4qK1ftokno0q4UoD9FRjAtCKC1JNUFfU9wa6ED1wfk3FyCaiH1wTuNkylkFvt-E3nVj7McAFrCXoTeqg4ilbbGxP5_fK5MW4LdhKS0Gb1oIS9nhdwiyN9apsU_w0rxuUmexdgGv3ZCGAyyGFdht-QQdaNlFOP3zx-jl9ub5-j57fLp7uJ4-ZooJXmVVqZhqc1aQudCMa0aAM01yIXnVci7mLcnzSpZQ1IK0LaHABRSVFrqo50Wt8mN0vtub_vwYIPbNwg3BppMN46xkNC8LkaiLHaWCizGAbnwwSxnGhpJmo3WTtG62Wif2aseuTQfj_2Aznc12E7-vNoT2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725213549</pqid></control><display><type>article</type><title>A dielectrophoresis proof of concept of polystyrene particles and in‐vitro human epidermal keratinocytes migration for wound rejuvenation</title><source>Access via Wiley Online Library</source><creator>Deivasigamani, Revathy ; Maidin, Nur Nasyifa Mohd ; Nasir, Nur Shahira Abdul ; Low, Mei Xian ; Kayani, Aminuddin Bin Ahmad ; Mohamed, Mohd Ambri ; Buyong, Muhamad Ramdzan</creator><creatorcontrib>Deivasigamani, Revathy ; Maidin, Nur Nasyifa Mohd ; Nasir, Nur Shahira Abdul ; Low, Mei Xian ; Kayani, Aminuddin Bin Ahmad ; Mohamed, Mohd Ambri ; Buyong, Muhamad Ramdzan</creatorcontrib><description>Diabetes affects approximately 170 million people worldwide, is expected to double by 2030, and is a severe problem. Electrical stimulation (ES) via dielectrophoresis (DEP) technique may be an effective alternative in enhancing healing rates in diabetic patients with open ulcers. This research used DEP force (FDEP) to manipulate 3.2, 4.8, 10, and 15 μm polystyrene (PS) particles to predict the migration capability of human epidermal keratinocytes (HEKs). A numerical modeling method, MyDEP, was used to predict the interpretation of Clausius–Mossotti factors of PS particles and HEKs. The finite element method computes the electric field intensity and particle trajectory based on DEP and drag forces in their respective medium. DEP experiments on numerous size PS particles and alive HEKs were carried out in a tapered aluminium microelectrode array using a non‐uniform electric field. The distinct PS particles exhibit positive DEP (PDEP), crossover frequency (fXO), and negative DEP (NDEP), whereas the HEKs experience, only NDEP due to its high conductive medium in frequency ranges from 100 kHz to 1 MHz. Finally, the DIPP‐MotionV analysis shows that particle mobility between speed and acceleration is statistically considerable. When an appropriate frequency is applied to HEKs in random locations, the FDEP aligns at the desired target position based on its dielectric properties, which accelerates wound healing in in‐vivo conditions.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.53096</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acceleration ; Aluminum ; biomedical applications ; Dielectric properties ; Dielectrophoresis ; Drag ; Electric fields ; Finite element method ; Frequency ranges ; Materials science ; Mathematical analysis ; Microelectrodes ; microfluidics ; microscopy ; Particle trajectories ; Polymers ; polystyrene ; Polystyrene resins ; Ulcers ; Wound healing</subject><ispartof>Journal of applied polymer science, 2022-11, Vol.139 (44), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2976-65c2cd3240b9f27f20e72f039a76d779bd0336a5e4890dd01e79e46f9f48b48c3</citedby><cites>FETCH-LOGICAL-c2976-65c2cd3240b9f27f20e72f039a76d779bd0336a5e4890dd01e79e46f9f48b48c3</cites><orcidid>0000-0003-1841-1716 ; 0000-0002-6473-9694 ; 0000-0003-1269-2131 ; 0000-0003-4104-5320 ; 0000-0002-7279-8600 ; 0000-0002-1832-6266 ; 0000-0002-0001-1864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.53096$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.53096$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Deivasigamani, Revathy</creatorcontrib><creatorcontrib>Maidin, Nur Nasyifa Mohd</creatorcontrib><creatorcontrib>Nasir, Nur Shahira Abdul</creatorcontrib><creatorcontrib>Low, Mei Xian</creatorcontrib><creatorcontrib>Kayani, Aminuddin Bin Ahmad</creatorcontrib><creatorcontrib>Mohamed, Mohd Ambri</creatorcontrib><creatorcontrib>Buyong, Muhamad Ramdzan</creatorcontrib><title>A dielectrophoresis proof of concept of polystyrene particles and in‐vitro human epidermal keratinocytes migration for wound rejuvenation</title><title>Journal of applied polymer science</title><description>Diabetes affects approximately 170 million people worldwide, is expected to double by 2030, and is a severe problem. Electrical stimulation (ES) via dielectrophoresis (DEP) technique may be an effective alternative in enhancing healing rates in diabetic patients with open ulcers. This research used DEP force (FDEP) to manipulate 3.2, 4.8, 10, and 15 μm polystyrene (PS) particles to predict the migration capability of human epidermal keratinocytes (HEKs). A numerical modeling method, MyDEP, was used to predict the interpretation of Clausius–Mossotti factors of PS particles and HEKs. The finite element method computes the electric field intensity and particle trajectory based on DEP and drag forces in their respective medium. DEP experiments on numerous size PS particles and alive HEKs were carried out in a tapered aluminium microelectrode array using a non‐uniform electric field. The distinct PS particles exhibit positive DEP (PDEP), crossover frequency (fXO), and negative DEP (NDEP), whereas the HEKs experience, only NDEP due to its high conductive medium in frequency ranges from 100 kHz to 1 MHz. Finally, the DIPP‐MotionV analysis shows that particle mobility between speed and acceleration is statistically considerable. When an appropriate frequency is applied to HEKs in random locations, the FDEP aligns at the desired target position based on its dielectric properties, which accelerates wound healing in in‐vivo conditions.</description><subject>Acceleration</subject><subject>Aluminum</subject><subject>biomedical applications</subject><subject>Dielectric properties</subject><subject>Dielectrophoresis</subject><subject>Drag</subject><subject>Electric fields</subject><subject>Finite element method</subject><subject>Frequency ranges</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Microelectrodes</subject><subject>microfluidics</subject><subject>microscopy</subject><subject>Particle trajectories</subject><subject>Polymers</subject><subject>polystyrene</subject><subject>Polystyrene resins</subject><subject>Ulcers</subject><subject>Wound healing</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLlOAzEQhi0EEuEoeANLVBQLtvfwuowQl4RECqhXjncMDhvb2LuJtqOn4Rl5EpyEFmmkub6Z0fwInVFySQlhV9L7yzInotpDE0oEz4qK1ftokno0q4UoD9FRjAtCKC1JNUFfU9wa6ED1wfk3FyCaiH1wTuNkylkFvt-E3nVj7McAFrCXoTeqg4ilbbGxP5_fK5MW4LdhKS0Gb1oIS9nhdwiyN9apsU_w0rxuUmexdgGv3ZCGAyyGFdht-QQdaNlFOP3zx-jl9ub5-j57fLp7uJ4-ZooJXmVVqZhqc1aQudCMa0aAM01yIXnVci7mLcnzSpZQ1IK0LaHABRSVFrqo50Wt8mN0vtub_vwYIPbNwg3BppMN46xkNC8LkaiLHaWCizGAbnwwSxnGhpJmo3WTtG62Wif2aseuTQfj_2Aznc12E7-vNoT2</recordid><startdate>20221120</startdate><enddate>20221120</enddate><creator>Deivasigamani, Revathy</creator><creator>Maidin, Nur Nasyifa Mohd</creator><creator>Nasir, Nur Shahira Abdul</creator><creator>Low, Mei Xian</creator><creator>Kayani, Aminuddin Bin Ahmad</creator><creator>Mohamed, Mohd Ambri</creator><creator>Buyong, Muhamad Ramdzan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1841-1716</orcidid><orcidid>https://orcid.org/0000-0002-6473-9694</orcidid><orcidid>https://orcid.org/0000-0003-1269-2131</orcidid><orcidid>https://orcid.org/0000-0003-4104-5320</orcidid><orcidid>https://orcid.org/0000-0002-7279-8600</orcidid><orcidid>https://orcid.org/0000-0002-1832-6266</orcidid><orcidid>https://orcid.org/0000-0002-0001-1864</orcidid></search><sort><creationdate>20221120</creationdate><title>A dielectrophoresis proof of concept of polystyrene particles and in‐vitro human epidermal keratinocytes migration for wound rejuvenation</title><author>Deivasigamani, Revathy ; Maidin, Nur Nasyifa Mohd ; Nasir, Nur Shahira Abdul ; Low, Mei Xian ; Kayani, Aminuddin Bin Ahmad ; Mohamed, Mohd Ambri ; Buyong, Muhamad Ramdzan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2976-65c2cd3240b9f27f20e72f039a76d779bd0336a5e4890dd01e79e46f9f48b48c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Aluminum</topic><topic>biomedical applications</topic><topic>Dielectric properties</topic><topic>Dielectrophoresis</topic><topic>Drag</topic><topic>Electric fields</topic><topic>Finite element method</topic><topic>Frequency ranges</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Microelectrodes</topic><topic>microfluidics</topic><topic>microscopy</topic><topic>Particle trajectories</topic><topic>Polymers</topic><topic>polystyrene</topic><topic>Polystyrene resins</topic><topic>Ulcers</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deivasigamani, Revathy</creatorcontrib><creatorcontrib>Maidin, Nur Nasyifa Mohd</creatorcontrib><creatorcontrib>Nasir, Nur Shahira Abdul</creatorcontrib><creatorcontrib>Low, Mei Xian</creatorcontrib><creatorcontrib>Kayani, Aminuddin Bin Ahmad</creatorcontrib><creatorcontrib>Mohamed, Mohd Ambri</creatorcontrib><creatorcontrib>Buyong, Muhamad Ramdzan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deivasigamani, Revathy</au><au>Maidin, Nur Nasyifa Mohd</au><au>Nasir, Nur Shahira Abdul</au><au>Low, Mei Xian</au><au>Kayani, Aminuddin Bin Ahmad</au><au>Mohamed, Mohd Ambri</au><au>Buyong, Muhamad Ramdzan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dielectrophoresis proof of concept of polystyrene particles and in‐vitro human epidermal keratinocytes migration for wound rejuvenation</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-11-20</date><risdate>2022</risdate><volume>139</volume><issue>44</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Diabetes affects approximately 170 million people worldwide, is expected to double by 2030, and is a severe problem. Electrical stimulation (ES) via dielectrophoresis (DEP) technique may be an effective alternative in enhancing healing rates in diabetic patients with open ulcers. This research used DEP force (FDEP) to manipulate 3.2, 4.8, 10, and 15 μm polystyrene (PS) particles to predict the migration capability of human epidermal keratinocytes (HEKs). A numerical modeling method, MyDEP, was used to predict the interpretation of Clausius–Mossotti factors of PS particles and HEKs. The finite element method computes the electric field intensity and particle trajectory based on DEP and drag forces in their respective medium. DEP experiments on numerous size PS particles and alive HEKs were carried out in a tapered aluminium microelectrode array using a non‐uniform electric field. The distinct PS particles exhibit positive DEP (PDEP), crossover frequency (fXO), and negative DEP (NDEP), whereas the HEKs experience, only NDEP due to its high conductive medium in frequency ranges from 100 kHz to 1 MHz. Finally, the DIPP‐MotionV analysis shows that particle mobility between speed and acceleration is statistically considerable. When an appropriate frequency is applied to HEKs in random locations, the FDEP aligns at the desired target position based on its dielectric properties, which accelerates wound healing in in‐vivo conditions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.53096</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1841-1716</orcidid><orcidid>https://orcid.org/0000-0002-6473-9694</orcidid><orcidid>https://orcid.org/0000-0003-1269-2131</orcidid><orcidid>https://orcid.org/0000-0003-4104-5320</orcidid><orcidid>https://orcid.org/0000-0002-7279-8600</orcidid><orcidid>https://orcid.org/0000-0002-1832-6266</orcidid><orcidid>https://orcid.org/0000-0002-0001-1864</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2022-11, Vol.139 (44), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2725213549
source Access via Wiley Online Library
subjects Acceleration
Aluminum
biomedical applications
Dielectric properties
Dielectrophoresis
Drag
Electric fields
Finite element method
Frequency ranges
Materials science
Mathematical analysis
Microelectrodes
microfluidics
microscopy
Particle trajectories
Polymers
polystyrene
Polystyrene resins
Ulcers
Wound healing
title A dielectrophoresis proof of concept of polystyrene particles and in‐vitro human epidermal keratinocytes migration for wound rejuvenation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dielectrophoresis%20proof%20of%20concept%20of%20polystyrene%20particles%20and%20in%E2%80%90vitro%20human%20epidermal%20keratinocytes%20migration%20for%20wound%20rejuvenation&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Deivasigamani,%20Revathy&rft.date=2022-11-20&rft.volume=139&rft.issue=44&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.53096&rft_dat=%3Cproquest_cross%3E2725213549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725213549&rft_id=info:pmid/&rfr_iscdi=true