A dielectrophoresis proof of concept of polystyrene particles and in‐vitro human epidermal keratinocytes migration for wound rejuvenation
Diabetes affects approximately 170 million people worldwide, is expected to double by 2030, and is a severe problem. Electrical stimulation (ES) via dielectrophoresis (DEP) technique may be an effective alternative in enhancing healing rates in diabetic patients with open ulcers. This research used...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2022-11, Vol.139 (44), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 44 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 139 |
creator | Deivasigamani, Revathy Maidin, Nur Nasyifa Mohd Nasir, Nur Shahira Abdul Low, Mei Xian Kayani, Aminuddin Bin Ahmad Mohamed, Mohd Ambri Buyong, Muhamad Ramdzan |
description | Diabetes affects approximately 170 million people worldwide, is expected to double by 2030, and is a severe problem. Electrical stimulation (ES) via dielectrophoresis (DEP) technique may be an effective alternative in enhancing healing rates in diabetic patients with open ulcers. This research used DEP force (FDEP) to manipulate 3.2, 4.8, 10, and 15 μm polystyrene (PS) particles to predict the migration capability of human epidermal keratinocytes (HEKs). A numerical modeling method, MyDEP, was used to predict the interpretation of Clausius–Mossotti factors of PS particles and HEKs. The finite element method computes the electric field intensity and particle trajectory based on DEP and drag forces in their respective medium. DEP experiments on numerous size PS particles and alive HEKs were carried out in a tapered aluminium microelectrode array using a non‐uniform electric field. The distinct PS particles exhibit positive DEP (PDEP), crossover frequency (fXO), and negative DEP (NDEP), whereas the HEKs experience, only NDEP due to its high conductive medium in frequency ranges from 100 kHz to 1 MHz. Finally, the DIPP‐MotionV analysis shows that particle mobility between speed and acceleration is statistically considerable. When an appropriate frequency is applied to HEKs in random locations, the FDEP aligns at the desired target position based on its dielectric properties, which accelerates wound healing in in‐vivo conditions. |
doi_str_mv | 10.1002/app.53096 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2725213549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725213549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2976-65c2cd3240b9f27f20e72f039a76d779bd0336a5e4890dd01e79e46f9f48b48c3</originalsourceid><addsrcrecordid>eNp1kLlOAzEQhi0EEuEoeANLVBQLtvfwuowQl4RECqhXjncMDhvb2LuJtqOn4Rl5EpyEFmmkub6Z0fwInVFySQlhV9L7yzInotpDE0oEz4qK1ftokno0q4UoD9FRjAtCKC1JNUFfU9wa6ED1wfk3FyCaiH1wTuNkylkFvt-E3nVj7McAFrCXoTeqg4ilbbGxP5_fK5MW4LdhKS0Gb1oIS9nhdwiyN9apsU_w0rxuUmexdgGv3ZCGAyyGFdht-QQdaNlFOP3zx-jl9ub5-j57fLp7uJ4-ZooJXmVVqZhqc1aQudCMa0aAM01yIXnVci7mLcnzSpZQ1IK0LaHABRSVFrqo50Wt8mN0vtub_vwYIPbNwg3BppMN46xkNC8LkaiLHaWCizGAbnwwSxnGhpJmo3WTtG62Wif2aseuTQfj_2Aznc12E7-vNoT2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725213549</pqid></control><display><type>article</type><title>A dielectrophoresis proof of concept of polystyrene particles and in‐vitro human epidermal keratinocytes migration for wound rejuvenation</title><source>Access via Wiley Online Library</source><creator>Deivasigamani, Revathy ; Maidin, Nur Nasyifa Mohd ; Nasir, Nur Shahira Abdul ; Low, Mei Xian ; Kayani, Aminuddin Bin Ahmad ; Mohamed, Mohd Ambri ; Buyong, Muhamad Ramdzan</creator><creatorcontrib>Deivasigamani, Revathy ; Maidin, Nur Nasyifa Mohd ; Nasir, Nur Shahira Abdul ; Low, Mei Xian ; Kayani, Aminuddin Bin Ahmad ; Mohamed, Mohd Ambri ; Buyong, Muhamad Ramdzan</creatorcontrib><description>Diabetes affects approximately 170 million people worldwide, is expected to double by 2030, and is a severe problem. Electrical stimulation (ES) via dielectrophoresis (DEP) technique may be an effective alternative in enhancing healing rates in diabetic patients with open ulcers. This research used DEP force (FDEP) to manipulate 3.2, 4.8, 10, and 15 μm polystyrene (PS) particles to predict the migration capability of human epidermal keratinocytes (HEKs). A numerical modeling method, MyDEP, was used to predict the interpretation of Clausius–Mossotti factors of PS particles and HEKs. The finite element method computes the electric field intensity and particle trajectory based on DEP and drag forces in their respective medium. DEP experiments on numerous size PS particles and alive HEKs were carried out in a tapered aluminium microelectrode array using a non‐uniform electric field. The distinct PS particles exhibit positive DEP (PDEP), crossover frequency (fXO), and negative DEP (NDEP), whereas the HEKs experience, only NDEP due to its high conductive medium in frequency ranges from 100 kHz to 1 MHz. Finally, the DIPP‐MotionV analysis shows that particle mobility between speed and acceleration is statistically considerable. When an appropriate frequency is applied to HEKs in random locations, the FDEP aligns at the desired target position based on its dielectric properties, which accelerates wound healing in in‐vivo conditions.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.53096</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Acceleration ; Aluminum ; biomedical applications ; Dielectric properties ; Dielectrophoresis ; Drag ; Electric fields ; Finite element method ; Frequency ranges ; Materials science ; Mathematical analysis ; Microelectrodes ; microfluidics ; microscopy ; Particle trajectories ; Polymers ; polystyrene ; Polystyrene resins ; Ulcers ; Wound healing</subject><ispartof>Journal of applied polymer science, 2022-11, Vol.139 (44), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2976-65c2cd3240b9f27f20e72f039a76d779bd0336a5e4890dd01e79e46f9f48b48c3</citedby><cites>FETCH-LOGICAL-c2976-65c2cd3240b9f27f20e72f039a76d779bd0336a5e4890dd01e79e46f9f48b48c3</cites><orcidid>0000-0003-1841-1716 ; 0000-0002-6473-9694 ; 0000-0003-1269-2131 ; 0000-0003-4104-5320 ; 0000-0002-7279-8600 ; 0000-0002-1832-6266 ; 0000-0002-0001-1864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.53096$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.53096$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Deivasigamani, Revathy</creatorcontrib><creatorcontrib>Maidin, Nur Nasyifa Mohd</creatorcontrib><creatorcontrib>Nasir, Nur Shahira Abdul</creatorcontrib><creatorcontrib>Low, Mei Xian</creatorcontrib><creatorcontrib>Kayani, Aminuddin Bin Ahmad</creatorcontrib><creatorcontrib>Mohamed, Mohd Ambri</creatorcontrib><creatorcontrib>Buyong, Muhamad Ramdzan</creatorcontrib><title>A dielectrophoresis proof of concept of polystyrene particles and in‐vitro human epidermal keratinocytes migration for wound rejuvenation</title><title>Journal of applied polymer science</title><description>Diabetes affects approximately 170 million people worldwide, is expected to double by 2030, and is a severe problem. Electrical stimulation (ES) via dielectrophoresis (DEP) technique may be an effective alternative in enhancing healing rates in diabetic patients with open ulcers. This research used DEP force (FDEP) to manipulate 3.2, 4.8, 10, and 15 μm polystyrene (PS) particles to predict the migration capability of human epidermal keratinocytes (HEKs). A numerical modeling method, MyDEP, was used to predict the interpretation of Clausius–Mossotti factors of PS particles and HEKs. The finite element method computes the electric field intensity and particle trajectory based on DEP and drag forces in their respective medium. DEP experiments on numerous size PS particles and alive HEKs were carried out in a tapered aluminium microelectrode array using a non‐uniform electric field. The distinct PS particles exhibit positive DEP (PDEP), crossover frequency (fXO), and negative DEP (NDEP), whereas the HEKs experience, only NDEP due to its high conductive medium in frequency ranges from 100 kHz to 1 MHz. Finally, the DIPP‐MotionV analysis shows that particle mobility between speed and acceleration is statistically considerable. When an appropriate frequency is applied to HEKs in random locations, the FDEP aligns at the desired target position based on its dielectric properties, which accelerates wound healing in in‐vivo conditions.</description><subject>Acceleration</subject><subject>Aluminum</subject><subject>biomedical applications</subject><subject>Dielectric properties</subject><subject>Dielectrophoresis</subject><subject>Drag</subject><subject>Electric fields</subject><subject>Finite element method</subject><subject>Frequency ranges</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Microelectrodes</subject><subject>microfluidics</subject><subject>microscopy</subject><subject>Particle trajectories</subject><subject>Polymers</subject><subject>polystyrene</subject><subject>Polystyrene resins</subject><subject>Ulcers</subject><subject>Wound healing</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLlOAzEQhi0EEuEoeANLVBQLtvfwuowQl4RECqhXjncMDhvb2LuJtqOn4Rl5EpyEFmmkub6Z0fwInVFySQlhV9L7yzInotpDE0oEz4qK1ftokno0q4UoD9FRjAtCKC1JNUFfU9wa6ED1wfk3FyCaiH1wTuNkylkFvt-E3nVj7McAFrCXoTeqg4ilbbGxP5_fK5MW4LdhKS0Gb1oIS9nhdwiyN9apsU_w0rxuUmexdgGv3ZCGAyyGFdht-QQdaNlFOP3zx-jl9ub5-j57fLp7uJ4-ZooJXmVVqZhqc1aQudCMa0aAM01yIXnVci7mLcnzSpZQ1IK0LaHABRSVFrqo50Wt8mN0vtub_vwYIPbNwg3BppMN46xkNC8LkaiLHaWCizGAbnwwSxnGhpJmo3WTtG62Wif2aseuTQfj_2Aznc12E7-vNoT2</recordid><startdate>20221120</startdate><enddate>20221120</enddate><creator>Deivasigamani, Revathy</creator><creator>Maidin, Nur Nasyifa Mohd</creator><creator>Nasir, Nur Shahira Abdul</creator><creator>Low, Mei Xian</creator><creator>Kayani, Aminuddin Bin Ahmad</creator><creator>Mohamed, Mohd Ambri</creator><creator>Buyong, Muhamad Ramdzan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1841-1716</orcidid><orcidid>https://orcid.org/0000-0002-6473-9694</orcidid><orcidid>https://orcid.org/0000-0003-1269-2131</orcidid><orcidid>https://orcid.org/0000-0003-4104-5320</orcidid><orcidid>https://orcid.org/0000-0002-7279-8600</orcidid><orcidid>https://orcid.org/0000-0002-1832-6266</orcidid><orcidid>https://orcid.org/0000-0002-0001-1864</orcidid></search><sort><creationdate>20221120</creationdate><title>A dielectrophoresis proof of concept of polystyrene particles and in‐vitro human epidermal keratinocytes migration for wound rejuvenation</title><author>Deivasigamani, Revathy ; Maidin, Nur Nasyifa Mohd ; Nasir, Nur Shahira Abdul ; Low, Mei Xian ; Kayani, Aminuddin Bin Ahmad ; Mohamed, Mohd Ambri ; Buyong, Muhamad Ramdzan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2976-65c2cd3240b9f27f20e72f039a76d779bd0336a5e4890dd01e79e46f9f48b48c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Aluminum</topic><topic>biomedical applications</topic><topic>Dielectric properties</topic><topic>Dielectrophoresis</topic><topic>Drag</topic><topic>Electric fields</topic><topic>Finite element method</topic><topic>Frequency ranges</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Microelectrodes</topic><topic>microfluidics</topic><topic>microscopy</topic><topic>Particle trajectories</topic><topic>Polymers</topic><topic>polystyrene</topic><topic>Polystyrene resins</topic><topic>Ulcers</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deivasigamani, Revathy</creatorcontrib><creatorcontrib>Maidin, Nur Nasyifa Mohd</creatorcontrib><creatorcontrib>Nasir, Nur Shahira Abdul</creatorcontrib><creatorcontrib>Low, Mei Xian</creatorcontrib><creatorcontrib>Kayani, Aminuddin Bin Ahmad</creatorcontrib><creatorcontrib>Mohamed, Mohd Ambri</creatorcontrib><creatorcontrib>Buyong, Muhamad Ramdzan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deivasigamani, Revathy</au><au>Maidin, Nur Nasyifa Mohd</au><au>Nasir, Nur Shahira Abdul</au><au>Low, Mei Xian</au><au>Kayani, Aminuddin Bin Ahmad</au><au>Mohamed, Mohd Ambri</au><au>Buyong, Muhamad Ramdzan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dielectrophoresis proof of concept of polystyrene particles and in‐vitro human epidermal keratinocytes migration for wound rejuvenation</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-11-20</date><risdate>2022</risdate><volume>139</volume><issue>44</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Diabetes affects approximately 170 million people worldwide, is expected to double by 2030, and is a severe problem. Electrical stimulation (ES) via dielectrophoresis (DEP) technique may be an effective alternative in enhancing healing rates in diabetic patients with open ulcers. This research used DEP force (FDEP) to manipulate 3.2, 4.8, 10, and 15 μm polystyrene (PS) particles to predict the migration capability of human epidermal keratinocytes (HEKs). A numerical modeling method, MyDEP, was used to predict the interpretation of Clausius–Mossotti factors of PS particles and HEKs. The finite element method computes the electric field intensity and particle trajectory based on DEP and drag forces in their respective medium. DEP experiments on numerous size PS particles and alive HEKs were carried out in a tapered aluminium microelectrode array using a non‐uniform electric field. The distinct PS particles exhibit positive DEP (PDEP), crossover frequency (fXO), and negative DEP (NDEP), whereas the HEKs experience, only NDEP due to its high conductive medium in frequency ranges from 100 kHz to 1 MHz. Finally, the DIPP‐MotionV analysis shows that particle mobility between speed and acceleration is statistically considerable. When an appropriate frequency is applied to HEKs in random locations, the FDEP aligns at the desired target position based on its dielectric properties, which accelerates wound healing in in‐vivo conditions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.53096</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1841-1716</orcidid><orcidid>https://orcid.org/0000-0002-6473-9694</orcidid><orcidid>https://orcid.org/0000-0003-1269-2131</orcidid><orcidid>https://orcid.org/0000-0003-4104-5320</orcidid><orcidid>https://orcid.org/0000-0002-7279-8600</orcidid><orcidid>https://orcid.org/0000-0002-1832-6266</orcidid><orcidid>https://orcid.org/0000-0002-0001-1864</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2022-11, Vol.139 (44), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2725213549 |
source | Access via Wiley Online Library |
subjects | Acceleration Aluminum biomedical applications Dielectric properties Dielectrophoresis Drag Electric fields Finite element method Frequency ranges Materials science Mathematical analysis Microelectrodes microfluidics microscopy Particle trajectories Polymers polystyrene Polystyrene resins Ulcers Wound healing |
title | A dielectrophoresis proof of concept of polystyrene particles and in‐vitro human epidermal keratinocytes migration for wound rejuvenation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dielectrophoresis%20proof%20of%20concept%20of%20polystyrene%20particles%20and%20in%E2%80%90vitro%20human%20epidermal%20keratinocytes%20migration%20for%20wound%20rejuvenation&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Deivasigamani,%20Revathy&rft.date=2022-11-20&rft.volume=139&rft.issue=44&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.53096&rft_dat=%3Cproquest_cross%3E2725213549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725213549&rft_id=info:pmid/&rfr_iscdi=true |