Strong Euler well-composedness

In this paper, we define a new flavour of well-composedness, called strong Euler well-composedness. In the general setting of regular cell complexes, a regular cell complex of dimension n is strongly Euler well-composed if the Euler characteristic of the link of each boundary cell is 1, which is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2022-11, Vol.44 (4), p.3038-3055
Hauptverfasser: Boutry, Nicolas, Gonzalez-Diaz, Rocio, Jimenez, Maria-Jose, Paluzo-Hildago, Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we define a new flavour of well-composedness, called strong Euler well-composedness. In the general setting of regular cell complexes, a regular cell complex of dimension n is strongly Euler well-composed if the Euler characteristic of the link of each boundary cell is 1, which is the Euler characteristic of an ( n - 1 ) -dimensional ball. Working in the particular setting of cubical complexes canonically associated with n D pictures, we formally prove in this paper that strong Euler well-composedness implies digital well-composedness in any dimension n ≥ 2 and that the converse is not true when n ≥ 4 .
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-021-00837-8