Holomorphic 1-forms on some coverings of the moduli space of curves
In this paper we consider unramified coverings of the moduli space \(\mathcal{M}_g\) of smooth projective complex curves of genus \(g\). Under some hypothesis on the branch locus of the finite extended map to the Deligne-Mumford compactification, we prove the vanishing of the vector space of holomor...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider unramified coverings of the moduli space \(\mathcal{M}_g\) of smooth projective complex curves of genus \(g\). Under some hypothesis on the branch locus of the finite extended map to the Deligne-Mumford compactification, we prove the vanishing of the vector space of holomorphic 1-forms on the preimage of the smooth locus of \(\mathcal{M}_g\). This applies to several moduli spaces, as the moduli space of curves with 2-level structures, of spin curves and of Prym curves. In particular, we obtain that there are no non-trivial holomorphic 1-forms on the smooth open set of the Prym locus. |
---|---|
ISSN: | 2331-8422 |