ON A PROBLEM OF ERDŐS ABOUT GRAPHS WHOSE SIZE IS THE TURÁN NUMBER PLUS ONE
We consider finite simple graphs. Given a graph H and a positive integer $n,$ the Turán number of H for the order $n,$ denoted $\mathrm {ex}(n,H),$ is the maximum size of a graph of order n not containing H as a subgraph. Erdős asked: ‘For which graphs H is it true that every graph on n vertices and...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2022-04, Vol.105 (2), p.177-187 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187 |
---|---|
container_issue | 2 |
container_start_page | 177 |
container_title | Bulletin of the Australian Mathematical Society |
container_volume | 105 |
creator | QIAO, PU ZHAN, XINGZHI |
description | We consider finite simple graphs. Given a graph H and a positive integer
$n,$
the Turán number of H for the order
$n,$
denoted
$\mathrm {ex}(n,H),$
is the maximum size of a graph of order n not containing H as a subgraph. Erdős asked: ‘For which graphs H is it true that every graph on n vertices and
$\mathrm {ex}(n,H)+1$
edges contains at least two H’s? Perhaps this is always true.’ We solve this problem in the negative by proving that for every integer
$k\ge 4$
there exists a graph H of order k and at least two orders n such that there exists a graph of order n and size
$\mathrm {ex}(n,H)+1$
which contains exactly one copy of
$H.$
Denote by
$C_4$
the
$4$
-cycle. We also prove that for every integer n with
$6\le n\le 11$
there exists a graph of order n and size
$\mathrm {ex}(n,C_4)+1$
which contains exactly one copy of
$C_4,$
but, for
$n=12$
or
$n=13,$
the minimum number of copies of
$C_4$
in a graph of order n and size
$\mathrm {ex}(n,C_4)+1$
is two. |
doi_str_mv | 10.1017/S000497272100040X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2724590630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S000497272100040X</cupid><sourcerecordid>2724590630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-57a8d3a1f455ed71cdaa2ab0f5a9fd42e81318db87cfad7760c1afaa912ea9983</originalsourceid><addsrcrecordid>eNp1UE1PwjAYbowmIvoDvDXxPO3HSrfjwMJIxkrWLRovS1lXAxHBDg4e_Qf-J-P_cgskHoyn9-v5ePMAcI3RLUaY3ymEkB9ywgnuOvR4AnqYM-bhAaWnoNctve5-Di6aZtVOjJGgBxKZwgjOMzlMxAzKMRTZ_fengtFQFjmcZNE8VvAhlkpANX0ScKpgHguYF9nXRwrTYjYUGZwnhYIyFZfgzOqXpr461j4oxiIfxV4iJ9NRlHgV8fnOY1wHhmps2x9qw3FltCZ6gSzToTU-qQNMcWAWAa-sNpwPUIW11TrEpNZhGNA-uDnobt3mbV83u3K12bvX1rJsA_BZiAYUtSh8QFVu0zSutuXWLdfavZcYlV1o5Z_QWg49cvR64Zbmuf6V_p_1A0wzaFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724590630</pqid></control><display><type>article</type><title>ON A PROBLEM OF ERDŐS ABOUT GRAPHS WHOSE SIZE IS THE TURÁN NUMBER PLUS ONE</title><source>Cambridge Journals Online</source><creator>QIAO, PU ; ZHAN, XINGZHI</creator><creatorcontrib>QIAO, PU ; ZHAN, XINGZHI</creatorcontrib><description>We consider finite simple graphs. Given a graph H and a positive integer
$n,$
the Turán number of H for the order
$n,$
denoted
$\mathrm {ex}(n,H),$
is the maximum size of a graph of order n not containing H as a subgraph. Erdős asked: ‘For which graphs H is it true that every graph on n vertices and
$\mathrm {ex}(n,H)+1$
edges contains at least two H’s? Perhaps this is always true.’ We solve this problem in the negative by proving that for every integer
$k\ge 4$
there exists a graph H of order k and at least two orders n such that there exists a graph of order n and size
$\mathrm {ex}(n,H)+1$
which contains exactly one copy of
$H.$
Denote by
$C_4$
the
$4$
-cycle. We also prove that for every integer n with
$6\le n\le 11$
there exists a graph of order n and size
$\mathrm {ex}(n,C_4)+1$
which contains exactly one copy of
$C_4,$
but, for
$n=12$
or
$n=13,$
the minimum number of copies of
$C_4$
in a graph of order n and size
$\mathrm {ex}(n,C_4)+1$
is two.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S000497272100040X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Apexes ; Graph theory ; Graphs ; Integers</subject><ispartof>Bulletin of the Australian Mathematical Society, 2022-04, Vol.105 (2), p.177-187</ispartof><rights>2021 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-57a8d3a1f455ed71cdaa2ab0f5a9fd42e81318db87cfad7760c1afaa912ea9983</citedby><cites>FETCH-LOGICAL-c247t-57a8d3a1f455ed71cdaa2ab0f5a9fd42e81318db87cfad7760c1afaa912ea9983</cites><orcidid>0000-0001-8683-6674 ; 0000-0001-7694-1286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S000497272100040X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>QIAO, PU</creatorcontrib><creatorcontrib>ZHAN, XINGZHI</creatorcontrib><title>ON A PROBLEM OF ERDŐS ABOUT GRAPHS WHOSE SIZE IS THE TURÁN NUMBER PLUS ONE</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>We consider finite simple graphs. Given a graph H and a positive integer
$n,$
the Turán number of H for the order
$n,$
denoted
$\mathrm {ex}(n,H),$
is the maximum size of a graph of order n not containing H as a subgraph. Erdős asked: ‘For which graphs H is it true that every graph on n vertices and
$\mathrm {ex}(n,H)+1$
edges contains at least two H’s? Perhaps this is always true.’ We solve this problem in the negative by proving that for every integer
$k\ge 4$
there exists a graph H of order k and at least two orders n such that there exists a graph of order n and size
$\mathrm {ex}(n,H)+1$
which contains exactly one copy of
$H.$
Denote by
$C_4$
the
$4$
-cycle. We also prove that for every integer n with
$6\le n\le 11$
there exists a graph of order n and size
$\mathrm {ex}(n,C_4)+1$
which contains exactly one copy of
$C_4,$
but, for
$n=12$
or
$n=13,$
the minimum number of copies of
$C_4$
in a graph of order n and size
$\mathrm {ex}(n,C_4)+1$
is two.</description><subject>Apexes</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Integers</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UE1PwjAYbowmIvoDvDXxPO3HSrfjwMJIxkrWLRovS1lXAxHBDg4e_Qf-J-P_cgskHoyn9-v5ePMAcI3RLUaY3ymEkB9ywgnuOvR4AnqYM-bhAaWnoNctve5-Di6aZtVOjJGgBxKZwgjOMzlMxAzKMRTZ_fengtFQFjmcZNE8VvAhlkpANX0ScKpgHguYF9nXRwrTYjYUGZwnhYIyFZfgzOqXpr461j4oxiIfxV4iJ9NRlHgV8fnOY1wHhmps2x9qw3FltCZ6gSzToTU-qQNMcWAWAa-sNpwPUIW11TrEpNZhGNA-uDnobt3mbV83u3K12bvX1rJsA_BZiAYUtSh8QFVu0zSutuXWLdfavZcYlV1o5Z_QWg49cvR64Zbmuf6V_p_1A0wzaFY</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>QIAO, PU</creator><creator>ZHAN, XINGZHI</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8683-6674</orcidid><orcidid>https://orcid.org/0000-0001-7694-1286</orcidid></search><sort><creationdate>202204</creationdate><title>ON A PROBLEM OF ERDŐS ABOUT GRAPHS WHOSE SIZE IS THE TURÁN NUMBER PLUS ONE</title><author>QIAO, PU ; ZHAN, XINGZHI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-57a8d3a1f455ed71cdaa2ab0f5a9fd42e81318db87cfad7760c1afaa912ea9983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Integers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>QIAO, PU</creatorcontrib><creatorcontrib>ZHAN, XINGZHI</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>QIAO, PU</au><au>ZHAN, XINGZHI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON A PROBLEM OF ERDŐS ABOUT GRAPHS WHOSE SIZE IS THE TURÁN NUMBER PLUS ONE</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2022-04</date><risdate>2022</risdate><volume>105</volume><issue>2</issue><spage>177</spage><epage>187</epage><pages>177-187</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>We consider finite simple graphs. Given a graph H and a positive integer
$n,$
the Turán number of H for the order
$n,$
denoted
$\mathrm {ex}(n,H),$
is the maximum size of a graph of order n not containing H as a subgraph. Erdős asked: ‘For which graphs H is it true that every graph on n vertices and
$\mathrm {ex}(n,H)+1$
edges contains at least two H’s? Perhaps this is always true.’ We solve this problem in the negative by proving that for every integer
$k\ge 4$
there exists a graph H of order k and at least two orders n such that there exists a graph of order n and size
$\mathrm {ex}(n,H)+1$
which contains exactly one copy of
$H.$
Denote by
$C_4$
the
$4$
-cycle. We also prove that for every integer n with
$6\le n\le 11$
there exists a graph of order n and size
$\mathrm {ex}(n,C_4)+1$
which contains exactly one copy of
$C_4,$
but, for
$n=12$
or
$n=13,$
the minimum number of copies of
$C_4$
in a graph of order n and size
$\mathrm {ex}(n,C_4)+1$
is two.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S000497272100040X</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8683-6674</orcidid><orcidid>https://orcid.org/0000-0001-7694-1286</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9727 |
ispartof | Bulletin of the Australian Mathematical Society, 2022-04, Vol.105 (2), p.177-187 |
issn | 0004-9727 1755-1633 |
language | eng |
recordid | cdi_proquest_journals_2724590630 |
source | Cambridge Journals Online |
subjects | Apexes Graph theory Graphs Integers |
title | ON A PROBLEM OF ERDŐS ABOUT GRAPHS WHOSE SIZE IS THE TURÁN NUMBER PLUS ONE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20A%20PROBLEM%20OF%20ERD%C5%90S%20ABOUT%20GRAPHS%20WHOSE%20SIZE%20IS%20THE%20TUR%C3%81N%20NUMBER%20PLUS%20ONE&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=QIAO,%20PU&rft.date=2022-04&rft.volume=105&rft.issue=2&rft.spage=177&rft.epage=187&rft.pages=177-187&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S000497272100040X&rft_dat=%3Cproquest_cross%3E2724590630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724590630&rft_id=info:pmid/&rft_cupid=10_1017_S000497272100040X&rfr_iscdi=true |