ON A PROBLEM OF ERDŐS ABOUT GRAPHS WHOSE SIZE IS THE TURÁN NUMBER PLUS ONE

We consider finite simple graphs. Given a graph H and a positive integer $n,$ the Turán number of H for the order $n,$ denoted $\mathrm {ex}(n,H),$ is the maximum size of a graph of order n not containing H as a subgraph. Erdős asked: ‘For which graphs H is it true that every graph on n vertices and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2022-04, Vol.105 (2), p.177-187
Hauptverfasser: QIAO, PU, ZHAN, XINGZHI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider finite simple graphs. Given a graph H and a positive integer $n,$ the Turán number of H for the order $n,$ denoted $\mathrm {ex}(n,H),$ is the maximum size of a graph of order n not containing H as a subgraph. Erdős asked: ‘For which graphs H is it true that every graph on n vertices and $\mathrm {ex}(n,H)+1$ edges contains at least two H’s? Perhaps this is always true.’ We solve this problem in the negative by proving that for every integer $k\ge 4$ there exists a graph H of order k and at least two orders n such that there exists a graph of order n and size $\mathrm {ex}(n,H)+1$ which contains exactly one copy of $H.$ Denote by $C_4$ the $4$ -cycle. We also prove that for every integer n with $6\le n\le 11$ there exists a graph of order n and size $\mathrm {ex}(n,C_4)+1$ which contains exactly one copy of $C_4,$ but, for $n=12$ or $n=13,$ the minimum number of copies of $C_4$ in a graph of order n and size $\mathrm {ex}(n,C_4)+1$ is two.
ISSN:0004-9727
1755-1633
DOI:10.1017/S000497272100040X