Massively Parallel Selection of NanoCluster Beacons (Adv. Mater. 41/2022)

Fluorescent Nanomaterials By repurposing next‐generation sequencing chips, millions of fluorescent NanoCluster Beacons (NCBs) can be screened in a single experiment. Combining this high‐throughput screening platform with machine‐learning algorithms, in article number 2204957, Hsin‐Chih Yeh and co‐wo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-10, Vol.34 (41), p.n/a
Hauptverfasser: Kuo, Yu‐An, Jung, Cheulhee, Chen, Yu‐An, Kuo, Hung‐Che, Zhao, Oliver S., Nguyen, Trung D., Rybarski, James R., Hong, Soonwoo, Chen, Yuan‐I, Wylie, Dennis C., Hawkins, John A., Walker, Jada N., Shields, Samuel W. J., Brodbelt, Jennifer S., Petty, Jeffrey T., Finkelstein, Ilya J., Yeh, Hsin‐Chih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluorescent Nanomaterials By repurposing next‐generation sequencing chips, millions of fluorescent NanoCluster Beacons (NCBs) can be screened in a single experiment. Combining this high‐throughput screening platform with machine‐learning algorithms, in article number 2204957, Hsin‐Chih Yeh and co‐workers establish a pipeline to design bright and multicolor NCBs in silico.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202270286