Effects of Influence Parameters on Freezing Wall Temperature Field in Subway Tunnel

In order to study the influence of different factors on the temperature field of the freezing wall of connecting passage, and to evaluate the effect of different influencing factors, four groups of analyses were carried out through three-dimensional finite element software, including the influence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-10, Vol.14 (19), p.12245
Hauptverfasser: Zhao, Yanxi, Wei, Youxin, Jiang, Jingshan, Jin, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to study the influence of different factors on the temperature field of the freezing wall of connecting passage, and to evaluate the effect of different influencing factors, four groups of analyses were carried out through three-dimensional finite element software, including the influence of brine temperature, the influence of freezing pipe diameter, the influence of freezing pipe spacing, and the influence of soil water content. The analysis shows that the finite element method based on the thermodynamics theory can better simulate the freezing temperature field and formation law of the freezing wall of each section. Among the influencing factors, the brine temperature and the freezing pipe spacing have the greatest influence on the temperature field of the freezing wall. The thickness of the freezing wall increases linearly with the increase in the freezing time. At the same time, the thickness of the freezing wall increases with the increase in the diameter of the freezing tube and the decrease in the spacing between the freezing tubes. With the decrease in brine temperature and water content, the difference of freezing wall thickness at different levels becomes larger and larger with the increase in freezing time. The influence of various factors on the freezing wall is in the order of brine temperature, freezing tube spacing, and freezing tube diameter. At present, the saltwater temperature in the freezing project of the metro shield tunnel is generally controlled at −28~−30 °C. Generally, from the perspective of actual engineering, it is better to control the spacing of freezing pipes at 1.0~1.3 m, and the diameter of the freezing pipe of the connecting channel is generally more than 89 mm. By comparing the numerical simulation value with monitoring data, the numerical calculation result is consistent with the monitoring temperature change rule.
ISSN:2071-1050
2071-1050
DOI:10.3390/su141912245