Arsenic Concentration, Fraction, and Environmental Implication in Fe–Mn Nodules in the Karst Area of Guangxi

We determined the concentrations, geochemical fractions, and potential environmental implications of arsenic (As) via pH-static extraction experiments, X-ray photoelectron spectroscopy (XPS), and sequential extraction. Compared with the corresponding soils, the enrichment factors followed the order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2022-10, Vol.14 (19), p.3021
Hauptverfasser: Ji, Wenbing, Ying, Rongrong, Yang, Zhongfang, Hu, Zhewei, Yang, Qiong, Liu, Xu, Yu, Tao, Wang, Lei, Qin, Jianxun, Wu, Tiansheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We determined the concentrations, geochemical fractions, and potential environmental implications of arsenic (As) via pH-static extraction experiments, X-ray photoelectron spectroscopy (XPS), and sequential extraction. Compared with the corresponding soils, the enrichment factors followed the order As (4.27) > Fe (2.14) > P (1.71) > Mn (1.41) > Al (0.95) > Ti (0.44) > Si (0.39) > Mg (0.28) > K (0.13). As showed a higher enrichment factor than all other elements. Arsenic showed a high linear correlation with iron in the FMNs, which can be expressed as As = 18.68Fe − 175.89 (r2 = 0.97, p < 0.01), indicating that Fe plays an important role in the geochemical behavior of As. Most of the As occurred as As (V) (83.79%) in the Fe–Mn nodules (FMNs), and As (III) (16.21%) only occupied a small portion. The distribution of As in the geochemical fractions of the FMNs followed the order F5 (99.54%) > F3 (0.25%) > F4 (0.10%) > F2 (0.09%) > F1 (0.02%), indicating that the residual fraction (F5) of As is the most dominant component. The total release of As from the nodules was extremely low (
ISSN:2073-4441
2073-4441
DOI:10.3390/w14193021