Multiple DP-Coloring of Planar Graphs Without 3-Cycles and Normally Adjacent 4-Cycles
The concept of DP-coloring of a graph is a generalization of list coloring introduced by Dvořák and Postle (J. Combin. Theory Ser. B 129 , 38–54, 2018). Multiple DP-coloring of graphs, as a generalization of multiple list coloring, was first studied by Bernshteyn, Kostochka and Zhu (J. Graph Theory...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2022-12, Vol.38 (6), Article 170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The concept of DP-coloring of a graph is a generalization of list coloring introduced by Dvořák and Postle (J. Combin. Theory Ser. B
129
, 38–54, 2018). Multiple DP-coloring of graphs, as a generalization of multiple list coloring, was first studied by Bernshteyn, Kostochka and Zhu (J. Graph Theory
93
, 203–221, 2020). This paper proves that planar graphs without 3-cycles and normally adjacent 4-cycles are (7
m
, 2
m
)-DP-colorable for every integer
m
. As a consequence, the strong fractional choice number of any planar graph without 3-cycles and normally adjacent 4-cycles is at most 7/2. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-022-02575-y |