Multiple DP-Coloring of Planar Graphs Without 3-Cycles and Normally Adjacent 4-Cycles

The concept of DP-coloring of a graph is a generalization of list coloring introduced by Dvořák and Postle (J. Combin. Theory Ser. B 129 , 38–54, 2018). Multiple DP-coloring of graphs, as a generalization of multiple list coloring, was first studied by Bernshteyn, Kostochka and Zhu (J. Graph Theory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2022-12, Vol.38 (6), Article 170
Hauptverfasser: Zhou, Huan, Zhu, Xuding
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concept of DP-coloring of a graph is a generalization of list coloring introduced by Dvořák and Postle (J. Combin. Theory Ser. B 129 , 38–54, 2018). Multiple DP-coloring of graphs, as a generalization of multiple list coloring, was first studied by Bernshteyn, Kostochka and Zhu (J. Graph Theory 93 , 203–221, 2020). This paper proves that planar graphs without 3-cycles and normally adjacent 4-cycles are (7 m , 2 m )-DP-colorable for every integer m . As a consequence, the strong fractional choice number of any planar graph without 3-cycles and normally adjacent 4-cycles is at most 7/2.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-022-02575-y