Behavior Analysis Using Enhanced Fuzzy Clustering and Deep Learning

Companies aim to offer customized treatments, intelligent care, and a seamless experience to their customers. Interactions between a company and its customers largely depend on the company’s ability to learn, understand, and predict customer behaviors. Customer behavior prediction is a pivotal facto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-10, Vol.11 (19), p.3172
Hauptverfasser: Altameem, Arwa A., Hafez, Alaaeldin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Companies aim to offer customized treatments, intelligent care, and a seamless experience to their customers. Interactions between a company and its customers largely depend on the company’s ability to learn, understand, and predict customer behaviors. Customer behavior prediction is a pivotal factor in improving a company’s quality of services and thus its growth. Different machine learning techniques have been applied to gather customer data to predict behavioral patterns. Traditional methods are unable to discover hidden patterns in ideal situations and need to be improved to produce more accurate predictions. This work proposes a novel hybrid model comprised of two modules: a novel clustering module on the basis of an optimized fuzzy deep belief network and a customer behavior prediction module on the basis of a deep recurrent neural network. Customers’ previous purchasing characteristics and portfolio details were analyzed by applying learning parameters. In this paper, the deep learning techniques were optimized by applying the butterfly optimization method, which minimizes the maximum error classification problem. The performance of the system was evaluated using experimental analysis. The proposed approach was compared to other single and hybrid-model-based approaches and attained the highest performance in the respective metrics.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11193172