Data Driven SVBRDF Estimation Using Deep Embedded Clustering

Photo-realistic representation in user-specified view and lighting conditions is a challenging but high-demand technology in the digital transformation of cultural heritages. Despite recent advances in neural renderings, it is still necessary to capture high-quality surface reflectance from photogra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-10, Vol.11 (19), p.3239
Hauptverfasser: Kim, Yong Hwi, Lee, Kwan H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photo-realistic representation in user-specified view and lighting conditions is a challenging but high-demand technology in the digital transformation of cultural heritages. Despite recent advances in neural renderings, it is still necessary to capture high-quality surface reflectance from photography in a controlled environment for real-time applications such as VR/AR and digital arts. In this paper, we present a deep embedding clustering network for spatially-varying bidirectional reflectance distribution function (SVBRDF) estimation. Our network is designed to simultaneously update the reflectance basis and its linear manifold in the spatial domain of SVBRDF. We show that our dual update scheme excels in optimizing the rendering loss in terms of the convergence speed and visual quality compared to the current iterative SVBRDF update methods.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11193239