Dual-Branch Multi-Level Feature Aggregation Network for Pansharpening
Dear Editor, In pansharpening task, the most existing deep-learning-based pan-sharpening methods fail to fully utilize the different level features, inevitably leading to spectral or spatial distortions. To address this challenge, in this letter, we propose a dual-branch multi-level feature aggregat...
Gespeichert in:
Veröffentlicht in: | IEEE/CAA journal of automatica sinica 2022-11, Vol.9 (11), p.2023-2026 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2026 |
---|---|
container_issue | 11 |
container_start_page | 2023 |
container_title | IEEE/CAA journal of automatica sinica |
container_volume | 9 |
creator | Cheng, Gui Shao, Zhenfeng Wang, Jiaming Huang, Xiao Dang, Chaoya |
description | Dear Editor, In pansharpening task, the most existing deep-learning-based pan-sharpening methods fail to fully utilize the different level features, inevitably leading to spectral or spatial distortions. To address this challenge, in this letter, we propose a dual-branch multi-level feature aggregation network for pansharpening (DMFANet). The experimental results on the WorldView-II (WV-II) and QuickBird (QB) dataset confirmed the notable superiority of our method over the current state-of-the-art methods from quantitative and qualitative point of view. The source code is available at https://github.com/Gui-Cheng/DMFANet. |
doi_str_mv | 10.1109/JAS.2022.105956 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_RIE</sourceid><recordid>TN_cdi_proquest_journals_2723901326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9915490</ieee_id><wanfj_id>zdhxb_ywb202211011</wanfj_id><sourcerecordid>zdhxb_ywb202211011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-d57ab86bd8f88f4e90dd87abf2007de773a2df6fe8d32e0cc1692905c55a54613</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EEhV0zYJNJHZIaf2InXhZSstD5SEBa8uJx2lKcYqTUMrXkyiorGY0OveOdBA6I3hECJbj-8nLiGJKRwRzycUBGlBGZShpHB3udyGO0bCqVhhjQnksZDRAs-tGr8Mrr122DB6adV2EC_iCdTAHXTcegkmee8h1XZQueIR6W_r3wJY-eNauWmq_AVe4_BQdWb2uYPg3T9DbfPY6vQ0XTzd308kizJjgdWh4rNNEpCaxSWIjkNiYpD1ZinFsII6ZpsYKC4lhFHCWESGpxDzjXPNIEHaCLvverXZWu1ytysa79qP6McvvVO22aWehVUI6-KKHN778bKCq_2kaUyYxYVS01LinMl9WlQerNr740H6nCFadW9W6VV2r6t22ifM-UQDAnpaS8Ehi9gv433PM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723901326</pqid></control><display><type>article</type><title>Dual-Branch Multi-Level Feature Aggregation Network for Pansharpening</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, Gui ; Shao, Zhenfeng ; Wang, Jiaming ; Huang, Xiao ; Dang, Chaoya</creator><creatorcontrib>Cheng, Gui ; Shao, Zhenfeng ; Wang, Jiaming ; Huang, Xiao ; Dang, Chaoya</creatorcontrib><description>Dear Editor, In pansharpening task, the most existing deep-learning-based pan-sharpening methods fail to fully utilize the different level features, inevitably leading to spectral or spatial distortions. To address this challenge, in this letter, we propose a dual-branch multi-level feature aggregation network for pansharpening (DMFANet). The experimental results on the WorldView-II (WV-II) and QuickBird (QB) dataset confirmed the notable superiority of our method over the current state-of-the-art methods from quantitative and qualitative point of view. The source code is available at https://github.com/Gui-Cheng/DMFANet.</description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2022.105956</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Agglomeration ; Graphical user interface ; Source code</subject><ispartof>IEEE/CAA journal of automatica sinica, 2022-11, Vol.9 (11), p.2023-2026</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-d57ab86bd8f88f4e90dd87abf2007de773a2df6fe8d32e0cc1692905c55a54613</citedby><cites>FETCH-LOGICAL-c365t-d57ab86bd8f88f4e90dd87abf2007de773a2df6fe8d32e0cc1692905c55a54613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zdhxb-ywb/zdhxb-ywb.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9915490$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9915490$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Gui</creatorcontrib><creatorcontrib>Shao, Zhenfeng</creatorcontrib><creatorcontrib>Wang, Jiaming</creatorcontrib><creatorcontrib>Huang, Xiao</creatorcontrib><creatorcontrib>Dang, Chaoya</creatorcontrib><title>Dual-Branch Multi-Level Feature Aggregation Network for Pansharpening</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><description>Dear Editor, In pansharpening task, the most existing deep-learning-based pan-sharpening methods fail to fully utilize the different level features, inevitably leading to spectral or spatial distortions. To address this challenge, in this letter, we propose a dual-branch multi-level feature aggregation network for pansharpening (DMFANet). The experimental results on the WorldView-II (WV-II) and QuickBird (QB) dataset confirmed the notable superiority of our method over the current state-of-the-art methods from quantitative and qualitative point of view. The source code is available at https://github.com/Gui-Cheng/DMFANet.</description><subject>Agglomeration</subject><subject>Graphical user interface</subject><subject>Source code</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQRS0EEhV0zYJNJHZIaf2InXhZSstD5SEBa8uJx2lKcYqTUMrXkyiorGY0OveOdBA6I3hECJbj-8nLiGJKRwRzycUBGlBGZShpHB3udyGO0bCqVhhjQnksZDRAs-tGr8Mrr122DB6adV2EC_iCdTAHXTcegkmee8h1XZQueIR6W_r3wJY-eNauWmq_AVe4_BQdWb2uYPg3T9DbfPY6vQ0XTzd308kizJjgdWh4rNNEpCaxSWIjkNiYpD1ZinFsII6ZpsYKC4lhFHCWESGpxDzjXPNIEHaCLvverXZWu1ytysa79qP6McvvVO22aWehVUI6-KKHN778bKCq_2kaUyYxYVS01LinMl9WlQerNr740H6nCFadW9W6VV2r6t22ifM-UQDAnpaS8Ehi9gv433PM</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Cheng, Gui</creator><creator>Shao, Zhenfeng</creator><creator>Wang, Jiaming</creator><creator>Huang, Xiao</creator><creator>Dang, Chaoya</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China%Department of Geosciences,University of Arkansas,Fayetteville,AR 72701 USA</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20221101</creationdate><title>Dual-Branch Multi-Level Feature Aggregation Network for Pansharpening</title><author>Cheng, Gui ; Shao, Zhenfeng ; Wang, Jiaming ; Huang, Xiao ; Dang, Chaoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-d57ab86bd8f88f4e90dd87abf2007de773a2df6fe8d32e0cc1692905c55a54613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Graphical user interface</topic><topic>Source code</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Gui</creatorcontrib><creatorcontrib>Shao, Zhenfeng</creatorcontrib><creatorcontrib>Wang, Jiaming</creatorcontrib><creatorcontrib>Huang, Xiao</creatorcontrib><creatorcontrib>Dang, Chaoya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Gui</au><au>Shao, Zhenfeng</au><au>Wang, Jiaming</au><au>Huang, Xiao</au><au>Dang, Chaoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Branch Multi-Level Feature Aggregation Network for Pansharpening</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>9</volume><issue>11</issue><spage>2023</spage><epage>2026</epage><pages>2023-2026</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract>Dear Editor, In pansharpening task, the most existing deep-learning-based pan-sharpening methods fail to fully utilize the different level features, inevitably leading to spectral or spatial distortions. To address this challenge, in this letter, we propose a dual-branch multi-level feature aggregation network for pansharpening (DMFANet). The experimental results on the WorldView-II (WV-II) and QuickBird (QB) dataset confirmed the notable superiority of our method over the current state-of-the-art methods from quantitative and qualitative point of view. The source code is available at https://github.com/Gui-Cheng/DMFANet.</abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2022.105956</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-9266 |
ispartof | IEEE/CAA journal of automatica sinica, 2022-11, Vol.9 (11), p.2023-2026 |
issn | 2329-9266 2329-9274 |
language | eng |
recordid | cdi_proquest_journals_2723901326 |
source | IEEE Electronic Library (IEL) |
subjects | Agglomeration Graphical user interface Source code |
title | Dual-Branch Multi-Level Feature Aggregation Network for Pansharpening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Branch%20Multi-Level%20Feature%20Aggregation%20Network%20for%20Pansharpening&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Cheng,%20Gui&rft.date=2022-11-01&rft.volume=9&rft.issue=11&rft.spage=2023&rft.epage=2026&rft.pages=2023-2026&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2022.105956&rft_dat=%3Cwanfang_jour_RIE%3Ezdhxb_ywb202211011%3C/wanfang_jour_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723901326&rft_id=info:pmid/&rft_ieee_id=9915490&rft_wanfj_id=zdhxb_ywb202211011&rfr_iscdi=true |