Dual-Branch Multi-Level Feature Aggregation Network for Pansharpening

Dear Editor, In pansharpening task, the most existing deep-learning-based pan-sharpening methods fail to fully utilize the different level features, inevitably leading to spectral or spatial distortions. To address this challenge, in this letter, we propose a dual-branch multi-level feature aggregat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2022-11, Vol.9 (11), p.2023-2026
Hauptverfasser: Cheng, Gui, Shao, Zhenfeng, Wang, Jiaming, Huang, Xiao, Dang, Chaoya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dear Editor, In pansharpening task, the most existing deep-learning-based pan-sharpening methods fail to fully utilize the different level features, inevitably leading to spectral or spatial distortions. To address this challenge, in this letter, we propose a dual-branch multi-level feature aggregation network for pansharpening (DMFANet). The experimental results on the WorldView-II (WV-II) and QuickBird (QB) dataset confirmed the notable superiority of our method over the current state-of-the-art methods from quantitative and qualitative point of view. The source code is available at https://github.com/Gui-Cheng/DMFANet.
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2022.105956