Using second-order information in gradient sampling methods for nonsmooth optimization

In this article, we show how second-order derivative information can be incorporated into gradient sampling methods for nonsmooth optimization. The second-order information we consider is essentially the set of coefficients of all second-order Taylor expansions of the objective in a closed ball arou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
1. Verfasser: Gebken, Bennet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we show how second-order derivative information can be incorporated into gradient sampling methods for nonsmooth optimization. The second-order information we consider is essentially the set of coefficients of all second-order Taylor expansions of the objective in a closed ball around a given point. Based on this concept, we define a model of the objective as the maximum of these Taylor expansions. Iteratively minimizing this model (constrained to the closed ball) results in a simple descent method, for which we prove convergence to minimal points in case the objective is convex. To obtain an implementable method, we construct an approximation scheme for the second-order information based on sampling objective values, gradients and Hessian matrices at finitely many points. Using a set of test problems, we compare the resulting method to five other available solvers. Considering the number of function evaluations, the results suggest that the method we propose is superior to the standard gradient sampling method, and competitive compared to other methods.
ISSN:2331-8422