Comparing Computational Architectures for Automated Journalism

The majority of NLG systems have been designed following either a template-based or a pipeline-based architecture. Recent neural models for data-to-text generation have been proposed with an end-to-end deep learning flavor, which handles non-linguistic input in natural language without explicit inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Sym, Yan V, Campos, João Gabriel M, José, Marcos M, Cozman, Fabio G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sym, Yan V
Campos, João Gabriel M
José, Marcos M
Cozman, Fabio G
description The majority of NLG systems have been designed following either a template-based or a pipeline-based architecture. Recent neural models for data-to-text generation have been proposed with an end-to-end deep learning flavor, which handles non-linguistic input in natural language without explicit intermediary representations. This study compares the most often employed methods for generating Brazilian Portuguese texts from structured data. Results suggest that explicit intermediate steps in the generation process produce better texts than the ones generated by neural end-to-end architectures, avoiding data hallucination while better generalizing to unseen inputs. Code and corpus are publicly available.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2723653902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723653902</sourcerecordid><originalsourceid>FETCH-proquest_journals_27236539023</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNEgCBbtHQKuC3HGtLoRSlHEtfsSaqopbVMzk_ur6AFc_b94M5EA4ibbbQEWIiXqlFKQF6A1JuJQ-WEywY13-bnIhp0fTS_L0Dwc24ZjsCRbH2QZ2Q-G7U1efAxv42hYiXlrerLpr0uxPh2v1Tmbgn9GS1x3X0s1FIC5xr0C_E-9ABseORY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723653902</pqid></control><display><type>article</type><title>Comparing Computational Architectures for Automated Journalism</title><source>Free E- Journals</source><creator>Sym, Yan V ; Campos, João Gabriel M ; José, Marcos M ; Cozman, Fabio G</creator><creatorcontrib>Sym, Yan V ; Campos, João Gabriel M ; José, Marcos M ; Cozman, Fabio G</creatorcontrib><description>The majority of NLG systems have been designed following either a template-based or a pipeline-based architecture. Recent neural models for data-to-text generation have been proposed with an end-to-end deep learning flavor, which handles non-linguistic input in natural language without explicit intermediary representations. This study compares the most often employed methods for generating Brazilian Portuguese texts from structured data. Results suggest that explicit intermediate steps in the generation process produce better texts than the ones generated by neural end-to-end architectures, avoiding data hallucination while better generalizing to unseen inputs. Code and corpus are publicly available.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Hallucinations ; Structured data ; Texts</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sym, Yan V</creatorcontrib><creatorcontrib>Campos, João Gabriel M</creatorcontrib><creatorcontrib>José, Marcos M</creatorcontrib><creatorcontrib>Cozman, Fabio G</creatorcontrib><title>Comparing Computational Architectures for Automated Journalism</title><title>arXiv.org</title><description>The majority of NLG systems have been designed following either a template-based or a pipeline-based architecture. Recent neural models for data-to-text generation have been proposed with an end-to-end deep learning flavor, which handles non-linguistic input in natural language without explicit intermediary representations. This study compares the most often employed methods for generating Brazilian Portuguese texts from structured data. Results suggest that explicit intermediate steps in the generation process produce better texts than the ones generated by neural end-to-end architectures, avoiding data hallucination while better generalizing to unseen inputs. Code and corpus are publicly available.</description><subject>Hallucinations</subject><subject>Structured data</subject><subject>Texts</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykEKwjAQQNEgCBbtHQKuC3HGtLoRSlHEtfsSaqopbVMzk_ur6AFc_b94M5EA4ibbbQEWIiXqlFKQF6A1JuJQ-WEywY13-bnIhp0fTS_L0Dwc24ZjsCRbH2QZ2Q-G7U1efAxv42hYiXlrerLpr0uxPh2v1Tmbgn9GS1x3X0s1FIC5xr0C_E-9ABseORY</recordid><startdate>20221008</startdate><enddate>20221008</enddate><creator>Sym, Yan V</creator><creator>Campos, João Gabriel M</creator><creator>José, Marcos M</creator><creator>Cozman, Fabio G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221008</creationdate><title>Comparing Computational Architectures for Automated Journalism</title><author>Sym, Yan V ; Campos, João Gabriel M ; José, Marcos M ; Cozman, Fabio G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27236539023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Hallucinations</topic><topic>Structured data</topic><topic>Texts</topic><toplevel>online_resources</toplevel><creatorcontrib>Sym, Yan V</creatorcontrib><creatorcontrib>Campos, João Gabriel M</creatorcontrib><creatorcontrib>José, Marcos M</creatorcontrib><creatorcontrib>Cozman, Fabio G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sym, Yan V</au><au>Campos, João Gabriel M</au><au>José, Marcos M</au><au>Cozman, Fabio G</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Comparing Computational Architectures for Automated Journalism</atitle><jtitle>arXiv.org</jtitle><date>2022-10-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The majority of NLG systems have been designed following either a template-based or a pipeline-based architecture. Recent neural models for data-to-text generation have been proposed with an end-to-end deep learning flavor, which handles non-linguistic input in natural language without explicit intermediary representations. This study compares the most often employed methods for generating Brazilian Portuguese texts from structured data. Results suggest that explicit intermediate steps in the generation process produce better texts than the ones generated by neural end-to-end architectures, avoiding data hallucination while better generalizing to unseen inputs. Code and corpus are publicly available.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2723653902
source Free E- Journals
subjects Hallucinations
Structured data
Texts
title Comparing Computational Architectures for Automated Journalism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Comparing%20Computational%20Architectures%20for%20Automated%20Journalism&rft.jtitle=arXiv.org&rft.au=Sym,%20Yan%20V&rft.date=2022-10-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2723653902%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723653902&rft_id=info:pmid/&rfr_iscdi=true