Comparing Computational Architectures for Automated Journalism
The majority of NLG systems have been designed following either a template-based or a pipeline-based architecture. Recent neural models for data-to-text generation have been proposed with an end-to-end deep learning flavor, which handles non-linguistic input in natural language without explicit inte...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The majority of NLG systems have been designed following either a template-based or a pipeline-based architecture. Recent neural models for data-to-text generation have been proposed with an end-to-end deep learning flavor, which handles non-linguistic input in natural language without explicit intermediary representations. This study compares the most often employed methods for generating Brazilian Portuguese texts from structured data. Results suggest that explicit intermediate steps in the generation process produce better texts than the ones generated by neural end-to-end architectures, avoiding data hallucination while better generalizing to unseen inputs. Code and corpus are publicly available. |
---|---|
ISSN: | 2331-8422 |