Impact of bound states on non-thermal dark matter production

We explore the impact of non-perturbative effects, namely Sommerfeld enhancement and bound state formation, on the cosmological production of non-thermal dark matter. For this purpose, we focus on a class of simplified models with t-channel mediators. These naturally combine the requirements for lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cosmology and astroparticle physics 2022-10, Vol.2022 (10), p.31
Hauptverfasser: Bollig, J., Vogl, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore the impact of non-perturbative effects, namely Sommerfeld enhancement and bound state formation, on the cosmological production of non-thermal dark matter. For this purpose, we focus on a class of simplified models with t-channel mediators. These naturally combine the requirements for large corrections in the early Universe, i.e. beyond the Standard Model states with long range interactions, with a sizable new physics production cross section at the LHC. We find that the dark matter yield of the superWIMP mechanism is suppressed considerably due to the non-perturbative effects under consideration in models with color-charged mediators. In models with only electrically charged mediators the impact of non-perturbative effects is less pronounced and gets eclipsed by the impact of a possible Higgs portal interaction. In both cases we find significant shifts in the cosmologically preferred parameter space of non-thermal dark matter in these models. We also revisit the implications of LHC bounds on long-lived particles associated with non-thermal dark matter and find that testing this scenario at the LHC is a bigger challenge than previously anticipated.
ISSN:1475-7516
1475-7516
DOI:10.1088/1475-7516/2022/10/031