Commutators of fractional maximal operator in variable Lebesgue spaces over bounded quasi‐metric measure spaces
We study the fractional maximal commutators Mb,η$$ {M}_{b,\eta } $$ and the commutators [b,Mη]$$ \left[b,{M}_{\eta}\right] $$ of the fractional maximal operator with b∈BMO(X)$$ b\in BMO(X) $$ in the variable Lebesgue spaces Lp(·)(X)$$ {L}^{p\left(\cdotp \right)}(X) $$ over bounde...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2022-11, Vol.45 (16), p.9266-9279 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the fractional maximal commutators
Mb,η$$ {M}_{b,\eta } $$ and the commutators
[b,Mη]$$ \left[b,{M}_{\eta}\right] $$ of the fractional maximal operator with
b∈BMO(X)$$ b\in BMO(X) $$ in the variable Lebesgue spaces
Lp(·)(X)$$ {L}^{p\left(\cdotp \right)}(X) $$ over bounded quasi‐metric measure spaces. We give necessary and sufficient conditions for the boundedness of the operators
Mb,η$$ {M}_{b,\eta } $$ and
[b,Mη]$$ \left[b,{M}_{\eta}\right] $$ on the spaces
Lp(·)(X)$$ {L}^{p\left(\cdotp \right)}(X) $$ when
b∈BMO(X)$$ b\in BMO(X) $$. Furthermore, we obtain some new characterizations for certain subspaces of
BMO(X)$$ BMO(X) $$. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.8303 |