Commutators of fractional maximal operator in variable Lebesgue spaces over bounded quasi‐metric measure spaces

We study the fractional maximal commutators Mb,η$$ {M}_{b,\eta } $$ and the commutators [b,Mη]$$ \left[b,{M}_{\eta}\right] $$ of the fractional maximal operator with b∈BMO(X)$$ b\in BMO(X) $$ in the variable Lebesgue spaces Lp(·)(X)$$ {L}^{p\left(\cdotp \right)}(X) $$ over bounde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2022-11, Vol.45 (16), p.9266-9279
Hauptverfasser: Guliyev, Vagif S., Samko, Stefan G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the fractional maximal commutators Mb,η$$ {M}_{b,\eta } $$ and the commutators [b,Mη]$$ \left[b,{M}_{\eta}\right] $$ of the fractional maximal operator with b∈BMO(X)$$ b\in BMO(X) $$ in the variable Lebesgue spaces Lp(·)(X)$$ {L}^{p\left(\cdotp \right)}(X) $$ over bounded quasi‐metric measure spaces. We give necessary and sufficient conditions for the boundedness of the operators Mb,η$$ {M}_{b,\eta } $$ and [b,Mη]$$ \left[b,{M}_{\eta}\right] $$ on the spaces Lp(·)(X)$$ {L}^{p\left(\cdotp \right)}(X) $$ when b∈BMO(X)$$ b\in BMO(X) $$. Furthermore, we obtain some new characterizations for certain subspaces of BMO(X)$$ BMO(X) $$.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.8303