A Deep Reinforcement Learning Approach for Composing Moving IoT Services
We develop a novel framework for efficiently and effectively discovering crowdsourced services that move in close proximity to a user over a period of time. We introduce a moving crowdsourced service model which is modelled as a moving region. We propose a deep reinforcement learning-based compositi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2022-09, Vol.15 (5), p.2538-2550 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a novel framework for efficiently and effectively discovering crowdsourced services that move in close proximity to a user over a period of time. We introduce a moving crowdsourced service model which is modelled as a moving region. We propose a deep reinforcement learning-based composition approach to select and compose moving IoT services considering quality parameters. Additionally, we develop a parallel flock-based service discovery algorithm as a ground-truth to measure the accuracy of the proposed approach. The experiments on two real-world datasets verify the effectiveness and efficiency of the deep reinforcement learning-based approach. |
---|---|
ISSN: | 1939-1374 1939-1374 2372-0204 |
DOI: | 10.1109/TSC.2021.3064329 |