Notes on Multiple Periodic Solutions for Second Order Hamiltonian Systems

In this paper, we study the multiplicity of periodic solutions for the second order Hamiltonian systems u ¨ + ∇ F ( t , u ) = 0 with the boundary condition u ( 0 ) - u ( T ) = u ˙ ( 0 ) - u ˙ ( T ) = 0 , where the potential F is either subquadratic k ( t )-concave or subquadratic μ ( t ) -convex. Ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2022-12, Vol.21 (4), Article 141
Hauptverfasser: Ye, Yiwei, Liu, Shan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the multiplicity of periodic solutions for the second order Hamiltonian systems u ¨ + ∇ F ( t , u ) = 0 with the boundary condition u ( 0 ) - u ( T ) = u ˙ ( 0 ) - u ˙ ( T ) = 0 , where the potential F is either subquadratic k ( t )-concave or subquadratic μ ( t ) -convex. Based on the reduction method and a three-critical-point theorem due to Brezis and Nirenberg, we obtain the multiplicity results, which complement and sharply improve some related results in the literature.
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-022-00673-z