Motivic cohomology of fat points in Milnor range via formal and rigid geometries

We present a formal scheme based cycle model for the motivic cohomology of the fat points defined by the truncated polynomial rings k [ t ] / ( t m ) with m ≥ 2 , in one variable over a field k . We compute their Milnor range cycle class groups when the field has sufficiently many elements. With som...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-11, Vol.302 (3), p.1679-1719
1. Verfasser: Park, Jinhyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a formal scheme based cycle model for the motivic cohomology of the fat points defined by the truncated polynomial rings k [ t ] / ( t m ) with m ≥ 2 , in one variable over a field k . We compute their Milnor range cycle class groups when the field has sufficiently many elements. With some aids from rigid analytic geometry and the Gersten conjecture for the Milnor K -theory resolved by M. Kerz, we prove that the resulting cycle class groups are isomorphic to the Milnor K -groups of the truncated polynomial rings, generalizing a theorem of Nesterenko-Suslin and Totaro.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-022-03122-4