Shock waves in gas flows with nanoparticles
The paper focuses on the analytical analysis of the propagation of a normal shock wave in an adiabatic gas flow with nanoparticles. A modified Rankine–Hugoniot model was used for this purpose. A solution is obtained for the Rankine–Hugoniot conditions in a gas flow with different nanoparticle concen...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2022-11, Vol.147 (22), p.12709-12719 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper focuses on the analytical analysis of the propagation of a normal shock wave in an adiabatic gas flow with nanoparticles. A modified Rankine–Hugoniot model was used for this purpose. A solution is obtained for the Rankine–Hugoniot conditions in a gas flow with different nanoparticle concentrations, which makes it possible to analyze the dynamics of variation of the parameters of this type of flow under a shock wave. The variation of velocity, pressure and entropy production of the adiabatic gas flow during a direct shock wave depending on the concentration of nanoparticles in the gas was depicted graphically. It was revealed that increasing the nanoparticle concentration to φ ~ 0.1 weakens the effect of the shock wave, and then, after passing the zone of minimum parameters, the intensity of the shock wave increases. |
---|---|
ISSN: | 1388-6150 1588-2926 |
DOI: | 10.1007/s10973-022-11483-5 |