(Z_3\) and \((\times Z_3)^3\) symmetry protected topological paramagnets

We identify two-dimensional three-state Potts paramagnets with gapless edge modes on a triangular lattice protected by \((\times Z_3)^3\equiv Z_3\times Z_3\times Z_3\) symmetry and smaller \(Z_3\) symmetry. We derive microscopic models for the gapless edge, uncover their symmetries, and analyze the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Topchyan, Hrant, Iugov, Vasilii, Mirumyan, Mkhitar, Khachatryan, Shahane A, Hakobyan, Tigran S, Sedrakyan, Tigran A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We identify two-dimensional three-state Potts paramagnets with gapless edge modes on a triangular lattice protected by \((\times Z_3)^3\equiv Z_3\times Z_3\times Z_3\) symmetry and smaller \(Z_3\) symmetry. We derive microscopic models for the gapless edge, uncover their symmetries, and analyze the conformal properties. We study the properties of the gapless edge by employing the numerical density-matrix renormalization group (DMRG) simulation and exact diagonalization. We discuss the corresponding conformal field theory, its central charge, and the scaling dimension of the corresponding primary field. We argue that the low energy limit of our edge modes is defined by the \(SU_k(3)/SU_k(2)\) coset conformal field theory with the level \(k=2\). The discussed two-dimensional models realize a variety of symmetry-protected topological phases, opening a window for studies of the unconventional quantum criticalities between them.
ISSN:2331-8422
DOI:10.48550/arxiv.2210.01187