Nonlinear stability of sinusoidal Euler flows on a flat two-torus
Sinusoidal flows are an important class of explicit stationary solutions of the two-dimensional incompressible Euler equations on a flat torus. For such flows, the steam functions are eigenfunctions of the negative Laplacian. In this paper, we prove that any sinusoidal flow related to some least eig...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sinusoidal flows are an important class of explicit stationary solutions of the two-dimensional incompressible Euler equations on a flat torus. For such flows, the steam functions are eigenfunctions of the negative Laplacian. In this paper, we prove that any sinusoidal flow related to some least eigenfunction is, up to phase translations, nonlinearly stable under \(L^p\) norm of the vorticity for any \(1 |
---|---|
ISSN: | 2331-8422 |