Nonlinear stability of sinusoidal Euler flows on a flat two-torus

Sinusoidal flows are an important class of explicit stationary solutions of the two-dimensional incompressible Euler equations on a flat torus. For such flows, the steam functions are eigenfunctions of the negative Laplacian. In this paper, we prove that any sinusoidal flow related to some least eig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Wang, Guodong, Zuo, Bijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sinusoidal flows are an important class of explicit stationary solutions of the two-dimensional incompressible Euler equations on a flat torus. For such flows, the steam functions are eigenfunctions of the negative Laplacian. In this paper, we prove that any sinusoidal flow related to some least eigenfunction is, up to phase translations, nonlinearly stable under \(L^p\) norm of the vorticity for any \(1
ISSN:2331-8422