Vector bundles on fuzzy Kähler manifolds
We propose a matrix regularization of vector bundles over a general closed K\"ahler manifold. This matrix regularization is given as a natural generalization of the Berezin-Toeplitz quantization and gives a map from sections of a vector bundle to matrices. We examine the asymptotic behaviors of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a matrix regularization of vector bundles over a general closed K\"ahler manifold. This matrix regularization is given as a natural generalization of the Berezin-Toeplitz quantization and gives a map from sections of a vector bundle to matrices. We examine the asymptotic behaviors of the map in the large-\(N\) limit. For vector bundles with algebraic structure, we derive a beautiful correspondence of the algebra of sections and the algebra of corresponding matrices in the large-\(N\) limit. We give two explicit examples for monopole bundles over a complex projective space \(CP^n\) and a torus \(T^{2n}\). |
---|---|
ISSN: | 2331-8422 |