Vector bundles on fuzzy Kähler manifolds

We propose a matrix regularization of vector bundles over a general closed K\"ahler manifold. This matrix regularization is given as a natural generalization of the Berezin-Toeplitz quantization and gives a map from sections of a vector bundle to matrices. We examine the asymptotic behaviors of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Adachi, Hiroyuki, Ishiki, Goro, Kanno, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a matrix regularization of vector bundles over a general closed K\"ahler manifold. This matrix regularization is given as a natural generalization of the Berezin-Toeplitz quantization and gives a map from sections of a vector bundle to matrices. We examine the asymptotic behaviors of the map in the large-\(N\) limit. For vector bundles with algebraic structure, we derive a beautiful correspondence of the algebra of sections and the algebra of corresponding matrices in the large-\(N\) limit. We give two explicit examples for monopole bundles over a complex projective space \(CP^n\) and a torus \(T^{2n}\).
ISSN:2331-8422