A Novel Power-Band based Data Segmentation Method for Enhancing Meter Phase and Transformer-Meter Pairing Identification

This paper presents a novel power-band-based data segmentation (PBDS) method to enhance the identification of meter phase and meter-transformer pairing. Meters that share the same transformer or are on the same phase typically exhibit strongly correlated voltage profiles. However, under high power c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Lee, Han Pyo, Rehm, P J, Makdad, Matthew, Miller, Edmond, Lu, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel power-band-based data segmentation (PBDS) method to enhance the identification of meter phase and meter-transformer pairing. Meters that share the same transformer or are on the same phase typically exhibit strongly correlated voltage profiles. However, under high power consumption, there can be significant voltage drops along the line connecting a customer to the distribution transformer. These voltage drops significantly decrease the correlations among meters on the same phase or supplied by the same transformer, resulting in high misidentification rates. To address this issue, we propose using power bands to select highly correlated voltage segments for computing correlations, rather than relying solely on correlations computed from the entire voltage waveforms. The algorithm's performance is assessed by conducting tests using data gathered from 13 utility feeders. To ensure the credibility of the identification results, utility engineers conduct field verification for all 13 feeders. The verification results unequivocally demonstrate that the proposed algorithm surpasses existing methods in both accuracy and robustness.
ISSN:2331-8422