A Combinatorial Bijection on k-Noncrossing Partitions
For any integer k ≥ 2, we prove combinatorially the following Euler (binomial) transformation identity NC n + 1 ( k ) ( t ) = t ∑ i = 0 n ( n i ) NW i ( k ) ( t ) , where NC m ( k ) ( t ) (resp. NW m ( k ) ( t )) is the sum of weights, t number of blocks , of partitions of {1,…,m} without k -crossin...
Gespeichert in:
Veröffentlicht in: | Combinatorica (Budapest. 1981) 2022-08, Vol.42 (4), p.559-586 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any integer
k
≥ 2, we prove combinatorially the following Euler (binomial) transformation identity
NC
n
+
1
(
k
)
(
t
)
=
t
∑
i
=
0
n
(
n
i
)
NW
i
(
k
)
(
t
)
,
where NC
m
(
k
)
(
t
) (resp. NW
m
(
k
)
(
t
)) is the sum of weights,
t
number of blocks
, of partitions of {1,…,m} without
k
-crossings (resp. enhanced
k
-crossings). The special
k
= 2 and
t
= 1 case, asserting the Euler transformation of Motzkin numbers are Catalan numbers, was discovered by Donaghey 1977. The result for
k
= 3 and
t
= 1, arising naturally in a recent study of pattern avoidance in ascent sequences and inversion sequences, was proved only analytically. |
---|---|
ISSN: | 0209-9683 1439-6912 |
DOI: | 10.1007/s00493-021-4262-x |