Acceleration of flow modeling using a freeware 2D GPU-shallow water equations code
Excessive rainfall, storm surges and dam break are some of the serious Geohazards afflicting humankind. The non-structural technique to combat floods includes flood modeling which provides a complete flood history over an area of interest in the time domain. Over the past decades, a number of 1D and...
Gespeichert in:
Veröffentlicht in: | Arabian journal of geosciences 2022, Vol.15 (20), Article 1584 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Excessive rainfall, storm surges and dam break are some of the serious Geohazards afflicting humankind. The
non-structural
technique to combat floods includes flood modeling which provides a complete flood history over an area of interest in the time domain. Over the past decades, a number of 1D and 2D hydraulic models have been developed to simulate floods; amongst these, the shallow water equations figure prominently as a potent model. However, these models suffer from a serious shortcoming, that is, of long run times, particularly for high resolution and large areas. A number of approaches and strategies have been proposed to remedy this issue, e.g. using models of reduced complexity, parallelization of algorithms and use of Graphical Processing Units (GPUs) to make the codes run faster. In this study, a freeware, 2D, GPU-enhanced code BASEMENT has been applied to three different test cases related to the laboratory and field. The results showed that, for lab-based cases, the GPU accelerated model was able to achieve a significant reduction in model execution time, attaining a Speedup ratio of 80, while for the field case the ratio was 8, which showed the potential of the GPU technology for flood inundation modeling. Further, the availability of a GPU-enhanced model in the public domain is very important to several scientific disciplines, e.g. Hydraulic Engineering, Flood Control and Management, Hazard Mitigation, etc. |
---|---|
ISSN: | 1866-7511 1866-7538 |
DOI: | 10.1007/s12517-022-10836-6 |