Effects of glyphosate on zebrafish: a systematic review and meta-analysis

Glyphosate herbicide is widely used in worldwide crop production. Consequently, its active ingredient, surfactants, and adjuvants commonly reach the aquatic ecosystem, thereby harming the biota. An investigation into how this herbicide affects aquatic species is important, especially in fish, as the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London) 2022-10, Vol.31 (8), p.1189-1204
Hauptverfasser: Ames, Jaíne, Miragem, Antônio Azambuja, Cordeiro, Marcos Freitas, Cerezer, Felipe Osmari, Loro, Vania Lucia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glyphosate herbicide is widely used in worldwide crop production. Consequently, its active ingredient, surfactants, and adjuvants commonly reach the aquatic ecosystem, thereby harming the biota. An investigation into how this herbicide affects aquatic species is important, especially in fish, as they have the ability to absorb and concentrate toxins. We aimed to evaluate the effects of glyphosate on the embryonic, larval and adult stages of zebrafish ( Danio rerio ), an appreciable organismal model. In this sense, we performed a meta-analysis using published articles from online databases (PubMed and ScienceDirect), which covered studies published until 2022. From a massive compilation of studies evaluating the effects of active substance glyphosate and Glyphosate-Based Herbicides (GBH) on zebrafish, we selected 36 studies used in downstream analyses. Overall, we report that glyphosate affects developmental stages and demonstrates toxicity and damage in zebrafish. We observed that embryos exposed to glyphosate exhibit increased mortality. There was also an increase in the number of morphological abnormalities related to yolk sac oedema, pericardial oedema, spinal curvature and body malformations, and a decrease in body size was observed. Furthermore, there was a decrease in the number of beats. The biochemical results demonstrated an increase in reactive oxygen species and antioxidant capacity against peroxyl radicals in the gills. The literature shows that glyphosate decreased the distance covered and the mean speed of the animals and increased the number of rotations. We concluded that glyphosate causes damage in the embryonic, larval and adult stages of this species. These results are valid for zebrafish and can be applied to other freshwater fish species. Graphical abstract
ISSN:0963-9292
1573-3017
DOI:10.1007/s10646-022-02581-z