Empowering the trustworthiness of ML-based critical systems through engineering activities
This paper reviews the entire engineering process of trustworthy Machine Learning (ML) algorithms designed to equip critical systems with advanced analytics and decision functions. We start from the fundamental principles of ML and describe the core elements conditioning its trust, particularly thro...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mattioli, Juliette Delaborde, Agnes Khalfaoui, Souhaiel Lecue, Freddy Sohier, Henri Jurie, Frederic |
description | This paper reviews the entire engineering process of trustworthy Machine Learning (ML) algorithms designed to equip critical systems with advanced analytics and decision functions. We start from the fundamental principles of ML and describe the core elements conditioning its trust, particularly through its design: namely domain specification, data engineering, design of the ML algorithms, their implementation, evaluation and deployment. The latter components are organized in an unique framework for the design of trusted ML systems. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2720665283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720665283</sourcerecordid><originalsourceid>FETCH-proquest_journals_27206652833</originalsourceid><addsrcrecordid>eNqNzL0KwjAUBeAgCBbtOwScCzGxP7tUHHRzcimx3rYpbVJzE4tvb0AfwOkM5ztnQSIuxC4p9pyvSIzYM8Z4lvM0FRG5leNkZrBKt9R1QJ316GZjXac0IFLT0Ms5uUuEB62tcqqWA8U3OhgxDKzxbUdBt0F_T2Tt1Cs4wA1ZNnJAiH-5JttjeT2cksmapwd0VW-81aGqeM5ZlqW8EOI_9QHjA0QF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720665283</pqid></control><display><type>article</type><title>Empowering the trustworthiness of ML-based critical systems through engineering activities</title><source>Freely Accessible Journals_</source><creator>Mattioli, Juliette ; Delaborde, Agnes ; Khalfaoui, Souhaiel ; Lecue, Freddy ; Sohier, Henri ; Jurie, Frederic</creator><creatorcontrib>Mattioli, Juliette ; Delaborde, Agnes ; Khalfaoui, Souhaiel ; Lecue, Freddy ; Sohier, Henri ; Jurie, Frederic</creatorcontrib><description>This paper reviews the entire engineering process of trustworthy Machine Learning (ML) algorithms designed to equip critical systems with advanced analytics and decision functions. We start from the fundamental principles of ML and describe the core elements conditioning its trust, particularly through its design: namely domain specification, data engineering, design of the ML algorithms, their implementation, evaluation and deployment. The latter components are organized in an unique framework for the design of trusted ML systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Decision analysis ; Machine learning</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mattioli, Juliette</creatorcontrib><creatorcontrib>Delaborde, Agnes</creatorcontrib><creatorcontrib>Khalfaoui, Souhaiel</creatorcontrib><creatorcontrib>Lecue, Freddy</creatorcontrib><creatorcontrib>Sohier, Henri</creatorcontrib><creatorcontrib>Jurie, Frederic</creatorcontrib><title>Empowering the trustworthiness of ML-based critical systems through engineering activities</title><title>arXiv.org</title><description>This paper reviews the entire engineering process of trustworthy Machine Learning (ML) algorithms designed to equip critical systems with advanced analytics and decision functions. We start from the fundamental principles of ML and describe the core elements conditioning its trust, particularly through its design: namely domain specification, data engineering, design of the ML algorithms, their implementation, evaluation and deployment. The latter components are organized in an unique framework for the design of trusted ML systems.</description><subject>Algorithms</subject><subject>Decision analysis</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzL0KwjAUBeAgCBbtOwScCzGxP7tUHHRzcimx3rYpbVJzE4tvb0AfwOkM5ztnQSIuxC4p9pyvSIzYM8Z4lvM0FRG5leNkZrBKt9R1QJ316GZjXac0IFLT0Ms5uUuEB62tcqqWA8U3OhgxDKzxbUdBt0F_T2Tt1Cs4wA1ZNnJAiH-5JttjeT2cksmapwd0VW-81aGqeM5ZlqW8EOI_9QHjA0QF</recordid><startdate>20220930</startdate><enddate>20220930</enddate><creator>Mattioli, Juliette</creator><creator>Delaborde, Agnes</creator><creator>Khalfaoui, Souhaiel</creator><creator>Lecue, Freddy</creator><creator>Sohier, Henri</creator><creator>Jurie, Frederic</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220930</creationdate><title>Empowering the trustworthiness of ML-based critical systems through engineering activities</title><author>Mattioli, Juliette ; Delaborde, Agnes ; Khalfaoui, Souhaiel ; Lecue, Freddy ; Sohier, Henri ; Jurie, Frederic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27206652833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Decision analysis</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Mattioli, Juliette</creatorcontrib><creatorcontrib>Delaborde, Agnes</creatorcontrib><creatorcontrib>Khalfaoui, Souhaiel</creatorcontrib><creatorcontrib>Lecue, Freddy</creatorcontrib><creatorcontrib>Sohier, Henri</creatorcontrib><creatorcontrib>Jurie, Frederic</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattioli, Juliette</au><au>Delaborde, Agnes</au><au>Khalfaoui, Souhaiel</au><au>Lecue, Freddy</au><au>Sohier, Henri</au><au>Jurie, Frederic</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Empowering the trustworthiness of ML-based critical systems through engineering activities</atitle><jtitle>arXiv.org</jtitle><date>2022-09-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This paper reviews the entire engineering process of trustworthy Machine Learning (ML) algorithms designed to equip critical systems with advanced analytics and decision functions. We start from the fundamental principles of ML and describe the core elements conditioning its trust, particularly through its design: namely domain specification, data engineering, design of the ML algorithms, their implementation, evaluation and deployment. The latter components are organized in an unique framework for the design of trusted ML systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2720665283 |
source | Freely Accessible Journals_ |
subjects | Algorithms Decision analysis Machine learning |
title | Empowering the trustworthiness of ML-based critical systems through engineering activities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Empowering%20the%20trustworthiness%20of%20ML-based%20critical%20systems%20through%20engineering%20activities&rft.jtitle=arXiv.org&rft.au=Mattioli,%20Juliette&rft.date=2022-09-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2720665283%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720665283&rft_id=info:pmid/&rfr_iscdi=true |