Empowering the trustworthiness of ML-based critical systems through engineering activities

This paper reviews the entire engineering process of trustworthy Machine Learning (ML) algorithms designed to equip critical systems with advanced analytics and decision functions. We start from the fundamental principles of ML and describe the core elements conditioning its trust, particularly thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-09
Hauptverfasser: Mattioli, Juliette, Delaborde, Agnes, Khalfaoui, Souhaiel, Lecue, Freddy, Sohier, Henri, Jurie, Frederic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mattioli, Juliette
Delaborde, Agnes
Khalfaoui, Souhaiel
Lecue, Freddy
Sohier, Henri
Jurie, Frederic
description This paper reviews the entire engineering process of trustworthy Machine Learning (ML) algorithms designed to equip critical systems with advanced analytics and decision functions. We start from the fundamental principles of ML and describe the core elements conditioning its trust, particularly through its design: namely domain specification, data engineering, design of the ML algorithms, their implementation, evaluation and deployment. The latter components are organized in an unique framework for the design of trusted ML systems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2720665283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720665283</sourcerecordid><originalsourceid>FETCH-proquest_journals_27206652833</originalsourceid><addsrcrecordid>eNqNzL0KwjAUBeAgCBbtOwScCzGxP7tUHHRzcimx3rYpbVJzE4tvb0AfwOkM5ztnQSIuxC4p9pyvSIzYM8Z4lvM0FRG5leNkZrBKt9R1QJ316GZjXac0IFLT0Ms5uUuEB62tcqqWA8U3OhgxDKzxbUdBt0F_T2Tt1Cs4wA1ZNnJAiH-5JttjeT2cksmapwd0VW-81aGqeM5ZlqW8EOI_9QHjA0QF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720665283</pqid></control><display><type>article</type><title>Empowering the trustworthiness of ML-based critical systems through engineering activities</title><source>Freely Accessible Journals_</source><creator>Mattioli, Juliette ; Delaborde, Agnes ; Khalfaoui, Souhaiel ; Lecue, Freddy ; Sohier, Henri ; Jurie, Frederic</creator><creatorcontrib>Mattioli, Juliette ; Delaborde, Agnes ; Khalfaoui, Souhaiel ; Lecue, Freddy ; Sohier, Henri ; Jurie, Frederic</creatorcontrib><description>This paper reviews the entire engineering process of trustworthy Machine Learning (ML) algorithms designed to equip critical systems with advanced analytics and decision functions. We start from the fundamental principles of ML and describe the core elements conditioning its trust, particularly through its design: namely domain specification, data engineering, design of the ML algorithms, their implementation, evaluation and deployment. The latter components are organized in an unique framework for the design of trusted ML systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Decision analysis ; Machine learning</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mattioli, Juliette</creatorcontrib><creatorcontrib>Delaborde, Agnes</creatorcontrib><creatorcontrib>Khalfaoui, Souhaiel</creatorcontrib><creatorcontrib>Lecue, Freddy</creatorcontrib><creatorcontrib>Sohier, Henri</creatorcontrib><creatorcontrib>Jurie, Frederic</creatorcontrib><title>Empowering the trustworthiness of ML-based critical systems through engineering activities</title><title>arXiv.org</title><description>This paper reviews the entire engineering process of trustworthy Machine Learning (ML) algorithms designed to equip critical systems with advanced analytics and decision functions. We start from the fundamental principles of ML and describe the core elements conditioning its trust, particularly through its design: namely domain specification, data engineering, design of the ML algorithms, their implementation, evaluation and deployment. The latter components are organized in an unique framework for the design of trusted ML systems.</description><subject>Algorithms</subject><subject>Decision analysis</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzL0KwjAUBeAgCBbtOwScCzGxP7tUHHRzcimx3rYpbVJzE4tvb0AfwOkM5ztnQSIuxC4p9pyvSIzYM8Z4lvM0FRG5leNkZrBKt9R1QJ316GZjXac0IFLT0Ms5uUuEB62tcqqWA8U3OhgxDKzxbUdBt0F_T2Tt1Cs4wA1ZNnJAiH-5JttjeT2cksmapwd0VW-81aGqeM5ZlqW8EOI_9QHjA0QF</recordid><startdate>20220930</startdate><enddate>20220930</enddate><creator>Mattioli, Juliette</creator><creator>Delaborde, Agnes</creator><creator>Khalfaoui, Souhaiel</creator><creator>Lecue, Freddy</creator><creator>Sohier, Henri</creator><creator>Jurie, Frederic</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220930</creationdate><title>Empowering the trustworthiness of ML-based critical systems through engineering activities</title><author>Mattioli, Juliette ; Delaborde, Agnes ; Khalfaoui, Souhaiel ; Lecue, Freddy ; Sohier, Henri ; Jurie, Frederic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27206652833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Decision analysis</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Mattioli, Juliette</creatorcontrib><creatorcontrib>Delaborde, Agnes</creatorcontrib><creatorcontrib>Khalfaoui, Souhaiel</creatorcontrib><creatorcontrib>Lecue, Freddy</creatorcontrib><creatorcontrib>Sohier, Henri</creatorcontrib><creatorcontrib>Jurie, Frederic</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattioli, Juliette</au><au>Delaborde, Agnes</au><au>Khalfaoui, Souhaiel</au><au>Lecue, Freddy</au><au>Sohier, Henri</au><au>Jurie, Frederic</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Empowering the trustworthiness of ML-based critical systems through engineering activities</atitle><jtitle>arXiv.org</jtitle><date>2022-09-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This paper reviews the entire engineering process of trustworthy Machine Learning (ML) algorithms designed to equip critical systems with advanced analytics and decision functions. We start from the fundamental principles of ML and describe the core elements conditioning its trust, particularly through its design: namely domain specification, data engineering, design of the ML algorithms, their implementation, evaluation and deployment. The latter components are organized in an unique framework for the design of trusted ML systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2720665283
source Freely Accessible Journals_
subjects Algorithms
Decision analysis
Machine learning
title Empowering the trustworthiness of ML-based critical systems through engineering activities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Empowering%20the%20trustworthiness%20of%20ML-based%20critical%20systems%20through%20engineering%20activities&rft.jtitle=arXiv.org&rft.au=Mattioli,%20Juliette&rft.date=2022-09-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2720665283%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720665283&rft_id=info:pmid/&rfr_iscdi=true