Empowering the trustworthiness of ML-based critical systems through engineering activities

This paper reviews the entire engineering process of trustworthy Machine Learning (ML) algorithms designed to equip critical systems with advanced analytics and decision functions. We start from the fundamental principles of ML and describe the core elements conditioning its trust, particularly thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-09
Hauptverfasser: Mattioli, Juliette, Delaborde, Agnes, Khalfaoui, Souhaiel, Lecue, Freddy, Sohier, Henri, Jurie, Frederic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reviews the entire engineering process of trustworthy Machine Learning (ML) algorithms designed to equip critical systems with advanced analytics and decision functions. We start from the fundamental principles of ML and describe the core elements conditioning its trust, particularly through its design: namely domain specification, data engineering, design of the ML algorithms, their implementation, evaluation and deployment. The latter components are organized in an unique framework for the design of trusted ML systems.
ISSN:2331-8422