Noble-metal-free single-phase Co3V2O8 with the structural integrity of nanofibers for the selective detection of ascorbic acid

We report the facile fabrication of single-phase bimetallic oxide Co3V2O8 nanofibers with a tubular morphology prepared by electrospinning and subsequent thermal annealing processes, and carefully investigate the electrochemically fundamental measurements for the selective electrochemical detection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2022-10, Vol.24 (38), p.6739-6746
Hauptverfasser: Jin, Dasol, Lee, Song Hee, Lee, Youngmi, Lee, Chongmok, Kim, Myung Hwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the facile fabrication of single-phase bimetallic oxide Co3V2O8 nanofibers with a tubular morphology prepared by electrospinning and subsequent thermal annealing processes, and carefully investigate the electrochemically fundamental measurements for the selective electrochemical detection of ascorbic acid (AA) for the first time. Particularly, single-phase Co3V2O8 with the specific oxidation states of Co and V preserves the structural integrity of nanofibers despite the disparate thermal decomposition properties between the metal precursors and polymer matrix. Furthermore, as noble-metal-free electrocatalysts with tubular morphology, the Co3V2O8 nanofibers exhibit high electrocatalytic activity for the oxidation of ascorbic acid (AA). The designed bimetallic oxide Co3V2O8 nanofibers with compositional homogeneity revealed a large electrochemical surface area, which has great beneficial merit in enhancing the electrocatalytic AA oxidation compared to that with pure metal oxides (Co3O4 and V2O5). Considering that low-cost metal oxides are promising electrocatalytic materials for practical applications, the as-prepared Co3V2O8 nanofibers with feasible AA sensing capability (sensitivity of 82.16 μA mM−1 cm−2) could be one of the candidates to resolve the utilization of catalysts that have been previously restricted by the high cost and scarcity of noble metals.
ISSN:1466-8033
DOI:10.1039/d2ce00931e